Issue 47

T. Kawabata et alii, Frattura ed Integrità Strutturale, 47 (2019) 416-424; DOI: 10.3221/IGF-ESIS.47.32 424 [10] Kawabata, T. and Aihara, S. (2015). Effect of stress field around running crack tip on fracture surface energy during brittle crack propagation - Proposal of a numerical model of brittle crack propagation (report 2) -, Journal of the Japan Society of Naval Architects and Ocean Engineers, 21, 63-73. (In Japanese) [11] Shirahata, H., Fujioka, M. and Ushioda, K. (2018). Estimation of the Effective Grain Size Controlling Brittle Crack Arrest Toughness of High-strength Steel Tetsu-to-Hagane, 104(3), pp. 177-185. [12] McClintock, F.A. (1999). A three dimensional model for polycrystalline cleavage and problems in cleavage after extended plastic flow or cracking, George R. Irwin Symposium, 1, pp.83-94. [13] Qiao, Y., Argon, A.S. (2003). Cleavage crack-growth-resistance of grain boundaries in polycrystalline Fe-2%Si alloy: Experiments and modeling, Mech. Mater. 35, pp. 129–154. DOI:10.1016/S0167-6636(02)00194-1. [14] Qiao, Y., Argon, A.S. (2003). Cleavage cracking resistance of high angle grain boundaries in Fe-3%Si alloy, Mech. Mater. 35, pp. 313–331. DOI:10.1016/S0167-6636(02)00284-3. [15] Nakanishi, D., Kawabata T. and Aihara, S. (2018). Brittle crack propagation resistance inside grain and at high angle grain boundary in 3% Si-Fe alloy, Acta Materialia, 144, pp. 768-776. [16] Kawabata, T., Nakanishi, D., Namegawa, T. and Aihara, S. (2018). Dissipation Energy during Brittle Crack Propagation in a Single Crystal of 3%Si-Fe Alloy, Materials Physics and Mechanics, 36, pp.18-38. [17] Smith, E. (1966). The nucleation and growth of cleavage fracture in high carbon bainite, Materials Science and Engineering A,158, pp.11-19. [18] Curry, D. A., Knott, J. F. (1978). Effect of microstructure on cleavage fracture stress in steel, Metal Science, pp.511- 514. [19] Meizoso, M., Ocana Arizcorreta, A. (1994). Modeling cleavage fracture of bainitic steels, Acta Metallurgica et Materialia, 42, pp.2057-2068. [20] Lambert-perlade, A., Gaurgues, A. F., Besson, J., Sturel, T. and Pineau, A. (2004). Mechanisms and modeling of cleavage fracture in simulated heat. Affected zone microstructures of high strength low alloy steel, Metallurgical and Materials Transactions A, 35, pp. 1039-1053. [21] Zener, C. (1948), The micro-mechanism of fracture, In, Fracture of Metals, F. Jonson, W. P. Rop and R. T. Bayles (eds.), ASM, Cleveland, Ohio, pp. 3-31. [22] Cottrell, A.H. (1958). Theory of brittle facture in steel and similar metals, Trans. Metallurgical Soc. AIME 212, pp. 192- 203. [23] Stroh, A. N. (1954). The formation of cracks as a result of plastic flow, Proceedings of the Royal Society A, 223, pp. 404-414. [24] Hull, D. (1960). Twinning and fracture of single crystals of 3% silicon iron, Acta Metallurgica, 8(1), pp. 11-18. [25] Honda, R. (1961). Cleavage Fracture in Single Crystals of Silicon Iron, Journal of the Physical Society of Japan, 16, pp. 1309-1321. [26] Matsuda, A. and Nakajima, K. (1976). Deformation Behavior of Iron Single Crystals under Simple Shear, Tetsu-to- Hagane, 62(6), pp. 652-660. [27] Rosakis, A.J. and Freund, L.B. (1982). Optical Measurement of the Plastic Strain Concentration at a Crack Tip in a Ductile Steel Plate, Journal of Engineering and Material Technology, 104(2), pp. 115-120. [28] Dally, J.W. (1979). Dynamic photoelastic studies of fracture, Experimental Mechanics, 19(10), pp 349–361. [29] Kawabata, T., Nishizono, Y., Aihara, S. (2017). Brittle crack propagation behavior in a member subjected to bending load, Theoretical and Applied Fracture Mechanics, 92, pp. 266-275.

RkJQdWJsaXNoZXIy MjM0NDE=