Issue 47

Z. Hu et alii, Frattura ed Integrità Strutturale, 47 (2019) 383-393; DOI: 10.3221/IGF-ESIS.47.28 393 [23] Berto F., Lazzarin P. (2014). Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches, Materials Science and Engineering: R: Reports, 75, pp. 1-48. [24] Razavi S., Ferro P., Berto F., Torgersen J. (2018). Fatigue strength of blunt V-notched specimens produced by selective laser melting of Ti-6Al-4V, Theor. Appl. Fract. Mec, 97, pp. 376-384. [25] Lazzarin P., Livieri P., Berto F., Zappalorto M. (2008). Local strain energy density and fatigue strength of welded joints under uniaxial and multiaxial loading, Eng. Fract. Mech., 75(7), pp. 1875-1889. [26] Lazzarin P., Sonsino C., Zambardi R. (2004). A notch stress intensity approach to assess the multiaxial fatigue strength of welded tube ‐ to ‐ flange joints subjected to combined loadings, Fatigue. Fract. Eng. M., 27(2), pp. 127-140. [27] Lazzarin P., Berto F., Zappalorto M. (2010). Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: Theoretical bases and applications, Int. J. Fatigue., 32(10), pp. 1559-1567. [28] Berto F. (2016). Fatigue and fracture assessment of notched components by means of the Strain Energy Density, Eng. Fract. Mech., 167, pp. 176-187. [29] Manson S., Halford G.R. (1981). Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage, Int. J. Fracture., 17(2), pp. 169-192. [30] Halford G.R. (1997). Cumulative fatigue damage modeling—crack nucleation and early growth, Int. J. Fatigue., 19(93), pp. 253-260. [31] Fatemi A., Yang L. (1998). Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials, Int. J. Fatigue., 20(1), pp. 9-34. [32] Socie D. (1987). Multiaxial fatigue damage models, J. Eng. Mater. Technol., 109(4), pp. 293-298. [33] Łagoda T. (2001). Energy models for fatigue life estimation under uniaxial random loading. Part I: The model elaboration, Int. J. Fatigue., 23(6), pp. 467-480. [34] Bui-Quoc T. (1982). Cumulative damage with interaction effect due to fatigue under torsion loading, Exp. Mech., 22(5), pp. 180-187. [35] Aïd A., Amrouche A., Bouiadjra B.B., Benguediab M., Mesmacque G. (2011). Fatigue life prediction under variable loading based on a new damage model, Mater. Design., 32(1), pp. 183-191.

RkJQdWJsaXNoZXIy MjM0NDE=