Issue 47

F. Cucinotta et alii, Frattura ed Integrità Strutturale, 47 (2019) 367-382; DOI: 10.3221/IGF-ESIS.47.27 382 [9] Koronis, G., Silva, A., Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications, Compos. Part B Eng., 44(1), pp. 120–127. DOI: 10.1016/j.compositesb.2012.07.004. [10] Boland, C.S., De Kleine, R., Keoleian, G.A., Lee, E.C., Kim, H.C., Wallington, T.J. (2016). Life Cycle Impacts of Natural Fiber Composites for Automotive Applications: Effects of Renewable Energy Content and Lightweighting, J. Ind. Ecol., 20(1), pp. 179–189. DOI: 10.1111/jiec.12286. [11] Barone, S., Cucinotta, F., Sfravara, F. (2017).A comparative Life Cycle Assessment of utility poles manufactured with different materials and dimensions. Advances on Mechanics, Design Engineering and Manufacturing, Springer International Publishing, pp. 91–99. [12] Kim, S.-Y., Shim, C.S., Sturtevant, C., Kim, D. (Dae-W., Song, H.C. (2014). Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures, Int. J. Nav. Archit. Ocean Eng., 6(3), pp. 723–736. DOI: 10.2478/ijnaoe-2013-0208. [13] Hinton, M.J., Soden, P.D. (1998). Predicting failure in composite laminates: the background to the exercise, Compos. Sci. Technol., 58(7), pp. 1001–1010. DOI: 10.1016/S0266-3538(98)00074-8. [14] Belouettar, S., Abbadi, A., Azari, Z., Belouettar, R., Freres, P. (2009). Experimental investigation of static and fatigue behaviour of composites honeycomb materials using four point bending tests, Compos. Struct., 87(3), pp. 265–273. DOI: 10.1016/j.compstruct.2008.01.015. [15] Manalo, A.C., Aravinthan, T., Karunasena, W., Islam, M.M. (2010). Flexural behaviour of structural fibre composite sandwich beams in flatwise and edgewise positions, Compos. Struct., 92(4), pp. 984–995. DOI: 10.1016/j.compstruct.2009.09.046. [16] Belingardi, G., Vadori, R. (2002). Low velocity impact tests of laminate glass-fiber-epoxy matrix composite material plates, Int. J. Impact Eng., 27(2), pp. 213–229. DOI: 10.1016/S0734-743X(01)00040-9. [17] Belingardi, G., Vadori, R. (2003). Influence of the laminate thickness in low velocity impact behavior of composite material plate, Compos. Struct., 61(1–2), pp. 27–38. DOI: 10.1016/S0263-8223(03)00027-8. [18] Russo, A., Zuccarello, B. (2007). Experimental and numerical evaluation of the mechanical behaviour of GFRP sandwich panels, Compos. Struct., 81(4), pp. 575–586. DOI: 10.1016/j.compstruct.2006.10.007. [19] Hassan, M.A., Naderi, S., Bushroa, A.R. (2014). Low-velocity impact damage of woven fabric composites: Finite element simulation and experimental verification, Mater. Des., 53, pp. 706–718. DOI: 10.1016/j.matdes.2013.07.068. [20] Cucinotta, F., Paoli, A., Risitano, G., Sfravara, F. (2017). Optical measurements and experimental investigations in repeated low-energy impacts in powerboat sandwich composites, Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., pp. 147509021772061. DOI: 10.1177/1475090217720619. [21] Cucinotta, F., Guglielmino, E., Risitano, G., Sfravara, F. (2016). Assessment of Damage Evolution in Sandwich Composite Material Subjected to Repeated Impacts by Means Optical Measurements, Procedia Struct. Integr., 2, pp. 3660–3667. DOI: 10.1016/j.prostr.2016.06.455. N OMENCLATURE Symbol Definition Unit σ R Ultimate stress strength [N/mm 2 ] E Young’s Modulus [N/mm 2 ] G Shear Modulus [N/mm 2 ] ν Poisson’s ratio - ρ Weight density [kg/mm 3 ] w Weight fraction - v Volume fraction -

RkJQdWJsaXNoZXIy MjM0NDE=