Issue 47

R. Fincato et alii, Frattura ed Integrità Strutturale, 47 (2019) 231-246; DOI: 10.3221/IGF-ESIS.47.18 245 [27] Tsutsumi, S., Toyosada, M., Hashiguchi, K. (2006). Extended Subloading Surface Model Incorporating Elastic Boundary Concept, J. Appl. Mech., 9, pp. 455–462. DOI: 10.2208/journalam.9.455. [28] Chaboche, J.L. (1986). Time-independent constitutive theories for cyclic plasticity, Int. J. Plast., 2(2), pp. 149–188. DOI: 10.1016/0749-6419(86)90010-0. [29] Rousselier, G., Luo, M. (2014). A fully coupled void damage and Mohr–Coulomb based ductile fracture model in the framework of a Reduced Texture Methodology, Int. J. Plast., 55, pp. 1–24. DOI: 10.1016/j.ijplas.2013.09.002. [30] Fincato, R., Tsutsumi, S. (2018). Evaluation of the ductile fracture of Q460 steel under two different failure criteria, Procedia Struct. Integr., 9, pp. 126–135. DOI: 10.1016/j.prostr.2018.06.021. [31] Rudnicki, J.W., Rice, J.R. (1975). Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solids, 23(6), pp. 371–394. DOI: 10.1016/0022-5096(75)90001-0. [32] Nishikawa, K., Yamamoto, S., Natori, T., Terao, K., Yasunami, H., Terada, M. (1998). Retrofitting for seismic upgrading of steel bridge columns, Eng. Struct., 20(4–6), pp. 540–551. DOI: 10.1016/S0141-0296(97)00025-4. [33] Roscoe, K.H. (1970). The Influence of Strains in Soil Mechanics, Géotechnique, 20(2), pp. 129–170. DOI: 10.1680/geot.1970.20.2.129. [34] Gao, S., Usami, T., Ge, H. (1998). Ductility Evaluation of Steel Bridge Piers with Pipe Sections, J. Eng. Mech., 124(3), pp. 260–267. DOI: 10.1061/(ASCE)0733-9399(1998)124:3(260). [35] Ucak, A., Tsopelas, P. (2015). Load Path Effects in Circular Steel Columns under Bidirectional Lateral Cyclic Loading, J. Struct. Eng., 141(5), pp. 04014133, DOI: 10.1061/(ASCE)ST.1943-541X.0001057. [36] Van Do, V.N., Lee, C.H., Chang, K.H. (2014). A nonlinear CDM model for ductile failure analysis of steel bridge columns under cyclic loading, Comput. Mech., 53(3), pp. 1209–1222. DOI: 10.1007/s00466-013-0964-2. [37] Goto, Y., Kumar, G.P., Kawanishi, N. (2010). Nonlinear Finite-Element Analysis for Hysteretic Behavior of Thin- Walled Circular Steel Columns with In-Filled Concrete, J. Struct. Eng., 136(11), pp. 1413–1422. DOI: 10.1061/(ASCE)ST.1943-541X.0000240. [38] De Freitas, M., Reis, L., Li, B. (2006). Comparative study on biaxial low-cycle fatigue behaviour of three structural steels, Fatigue Fract. Eng. Mater. Struct., 29(12), pp. 992–999. DOI: 10.1111/j.1460-2695.2006.01061.x. N OMENCLATURE , σ σ  Cauchy stress, corotational stress rate , α α  back stress, corotational back stress rate s similarity center σ conjugate Cauchy stress α conjugate back stress ˆ s similarity center observed from the back stress ˆ σ Cauchy stress observed from the back stress σ  Cauchy stress observed from the similarity center E tensor of the elastic constants E tensor of the elastic constants pre-multiplied by the weakening function (1-D) F isotropic-hardening function F 0 initial size of the normal-yield surface (i.e. yield stress) H isotropic hardening variable , D T H H cumulative plastic variable (i.e. equivalent plastic strain), cumulative tangential plastic strain p H limit for the cumulative plastic strain plateau R similarity ratio ( 0 1 R   ) R e material constant describing the elastic limit of R ( 0 1 e R   ) λ plastic multiplier c material constant affecting the rate of the similarity-center  maximum ratio between the normal-yield and similarity-center surface ( 0 1    ). D ductile damage scalar variable ( 0 1 D   ) σ m mean stress

RkJQdWJsaXNoZXIy MjM0NDE=