Issue 47

R. Fincato et alii, Frattura ed Integrità Strutturale, 47 (2019) 231-246; DOI: 10.3221/IGF-ESIS.47.18 244 deformation and ductile fracture, Eng. Fract. Mech., 147, pp. 140–157. DOI: 10.1016/j.engfracmech.2015.08.007. [2] Bai, Y., Teng, X., Wierzbicki, T. (2009). On the application of stress triaxiality formula for plane strain fracture testing, J. Eng. Mater. Technol., 131(2), pp. 021002. DOI: 10.1115/1.3078390. [3] Bao, Y., Treitler, R. (2004). Ductile crack formation on notched Al2024-T351 bars under compression–tension loading, Mater. Sci. Eng. A, 384(1–2), pp. 385–394. DOI: 10.1016/j.msea.2004.06.056. [4] Bao, Y., Wierzbicki, T. (2004). On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci., 46(1), pp. 81–98. DOI: 10.1016/j.ijmecsci.2004.02.006. [5] Brünig, M., Gerke, S., Hagenbrock, V. (2013). Micro-mechanical studies on the effect of the stress triaxiality and the Lode parameter on ductile damage, Int. J. Plast., 50, pp. 49–65. DOI: 10.1016/j.ijplas.2013.03.012. [6] Papasidero, J., Doquet, V., Mohr, D. (2014). Determination of the Effect of Stress State on the Onset of Ductile Fracture Through Tension-Torsion Experiments, Exp. Mech., 54(2), pp. 137–151. DOI: 10.1007/s11340-013-9788-4. [7] Faleskog, J., Barsoum, I. (2013). Tension–torsion fracture experiments—Part I: Experiments and a procedure to evaluate the equivalent plastic strain, Int. J. Solids Struct., 50(25–26), pp. 4241–4257. DOI: 10.1016/j.ijsolstr.2013.08.029. [8] Cortese, L., Nalli, F., Rossi, M. (2016). A nonlinear model for ductile damage accumulation under multiaxial non- proportional loading conditions, Int. J. Plast., 85, pp. 77–92. DOI: 10.1016/j.ijplas.2016.07.003. [9] Algarni, M., Choi, Y., Bai, Y. (2017). A unified material model for multiaxial ductile fracture and extremely low cycle fatigue of Inconel 718, Int. J. Fatigue, 96, pp. 162–177. DOI: 10.1016/j.ijfatigue.2016.11.033. [10] Papasidero, J., Doquet, V., Mohr, D. (2015). Ductile fracture of aluminum 2024-T351 under proportional and non- proportional multi-axial loading: Bao–Wierzbicki results revisited, Int. J. Solids Struct., 69–70, pp. 459–74. DOI: 10.1016/j.ijsolstr.2015.05.006. [11] Fincato, R., Tsutsumi, S. (2017). A return mapping algorithm for elastoplastic and ductile damage constitutive equations using the subloading surface method, Int. J. Numer. Methods Eng., 113(11), pp. 1729–1754. DOI: 10.1002/nme.5718. [12] Bai, Y., Wierzbicki, T. (2010). Application of extended Mohr–Coulomb criterion to ductile fracture, Int. J. Fract., 161(1), pp. 1–20. DOI: 10.1007/s10704-009-9422-8. [13] Lemaitre, J. (1985). Coupled elasto-plasticity and damage constitutive equations, Comput. Methods Appl. Mech. Eng., 51(1–3), pp. 31–49. DOI: 10.1016/0045-7825(85)90026-X. [14] Halama, R., Sedlk, J., Ofer, M. (2012).Phenomenological Modelling of Cyclic Plasticity. Numerical Modelling, InTech. [15] Hashiguchi, K. (2009). Elastoplasticity theory, vol. 42, Berlin, Heidelberg, Springer-Verlag Berlin Heidelberg. [16] Hashiguchi, K., Tsutsumi, S. (2001). Elastoplastic constitutive equation with tangential stress rate effect, Int. J. Plast., 17(1), pp. 117–145. DOI: 10.1016/S0749-6419(00)00021-8. [17] Drucker, D.C. (1988). Conventional and Unconventional Plastic Response and Representation, Appl. Mech. Rev., 41(4), pp. 151. DOI: 10.1115/1.3151888. [18] Tsutsumi, S., Murakami, K., Gotoh, K., Toyosada, M. (2008). Cyclic stress-strain relation under high cycle fatigue process, J. Japan Soc. Nav. Archit. Ocean Eng., 7, pp. 243–250. DOI: 10.2534/jjasnaoe.7.243. [19] Tsutsumi, S., Fincato, R., Ohata, M., Sano, T. (2017). Assessment Technology of Fatigue Crack Initiation Life of Weld Structures, Q. J. Japan Weld. Soc., 86(1), pp. 56–58. DOI: 10.2207/jjws.86.56. [20] Tsutsumi, S., Morita, K., Fincato, R., Momii, H. (2016). Fatigue life assessment of a non-load carrying fillet joint considering the effects of a cyclic plasticity and weld bead shape, Facture Stuctural Integr., 38, pp. 244–250. DOI: 10.3221/IGF-ESIS.38.33. [21] Fincato, R., Tsutsumi, S. (2017). Numerical study of a welded plate instability using the subloading surface model, Mar. Struct., 55, pp. 104–120. DOI: 10.1016/j.marstruc.2017.05.001. [22] Tsutsumi, S., Toyosada, M., Murakami, K. (2007). Generation of Plastic Strain due to Constant Cyclic Loading Under Macroscopically Elastic Condition, Trans. Japan Soc. Mech. Eng. Ser. A, 73(730), pp. 724–731. DOI: 10.1299/kikaia.73.724. [23] Hashiguchi, K., Ueno, M., Ozaki, T. (2012). Elastoplastic model of metals with smooth elastic–plastic transition, Acta Mech., 223(5), pp. 985–1013. DOI: 10.1007/s00707-012-0615-2. [24] Tsutsumi, S., Hashiguchi, K. (2005). General non-proportional loading behavior of soils, Int. J. Plast., 21(10), pp. 1941– 1969. DOI: 10.1016/j.ijplas.2005.01.001. [25] Tsutsumi, S., Kaneko, K. (2008). Constitutive response of idealized granular media under the principal stress axes rotation, Int. J. Plast., 24(11) , pp. 1967–1989. DOI: 10.1016/j.ijplas.2008.05.001. [26] Salomoni, V.A., Fincato, R. (2012). 3D subsidence analyses above gas reservoirs accounting for an unconventional plasticity model, Int. J. Numer. Anal. Methods Geomech., 36(8). DOI: 10.1002/nag.1032.

RkJQdWJsaXNoZXIy MjM0NDE=