Issue 43

L.C.H. Ricardo, Frattura ed Integrità Strutturale, 43 (2018) 57-78; DOI: 10.3221/IGF-ESIS.43.04 76 DOI:10.1016/0022-5096(60)90013-2. [18] Williams, M. L., On The stress distribution at base stationary crack, J. Appl. Mech., 24 (1957) 111-114. [19] Murthy, A. R. C., Palani, G. S., Iyer, N. R., State of art review on fatigue crack growth analysis under variable amplitude loading IEI Journal, (2004) 118-129. [20] Wheeler, O. E., Spectrum loading and crack growth, Transactions of the ASME Series D, Journal of Basic Engineering, 94 (1972) 181-186. [21] Willenborg, J. D., Engle, R. M., Wood, H. A., A crack growth retardation model using an effective stress concept, AFFDL, TM-71-FBR, (1971), Air Force Flight Dynamics Laboratory, Wright Patterson Air force Base, OH. [22] Porter, T. R., Method of analysis and prediction of variable amplitude fatigue crack growth, Eng. Fracture Mechanics, 4 (1972) 717-736. DOI.org/10.1016/0013-7944 (72)90011-2. [23] Gray, T. D., Gallagher, J. P., Predicting fatigue crack retardation following a single overload using a modified wheeler model, ASTM STP 590 (1976) 331-344. DOI: 10.1520/STP590-EB [24] Gallagher, J. P., Hughes, T. F., Influence of the yield strength on overload fatigue crack growth behavior of 4340 steel, AFFDL – TR-74-27, Air Force Flight Dynamics Laboratory, Wright Patterson Air force Base, OH, (1974). [25] Johnson, W. S., Multi-parameter yield zone model For Predicting Spectrum Crack Growth, ASTM STP 748 (1981), 85-102. DOI: 10.1520/E0748-02R08. [26] Chang, J. B. Hiyama, R. M., Szamossi, M., Improved methods for predicting spectrum loadings effects, AFWAL-TR- 81-3092, Air Force Flight Dynamics Laboratory, Wright Patterson Air force Base, OH, (1984). [27] Elber, W., The significance of fatigue crack closure, ASTM STP 486 (1971) 230- 242. DOI: 10.1520/STP486-EB. [28] Bell, P. D., Creager, M., Crack growth analyses for arbitrary spectrum loading, AFFDL-TR-74-129, Air Force Flight Dynamics Laboratory, Wright Patterson Air force Base, OH, (1974). [29] Newman, J. C., A Finite element analysis fatigue crack closure, NASA TM X 72005, NASA, Hampton, VA, (1975). [30] Dill, H. D., Saff, C. R., Spectrum crack growth prediction method based on crack surface displacement and contact analyses, Fatigue Crack Growth under Spectrum Loads, ASTM STP 595 (1976) 306–319. DOI: 10.1520/STP595-EB. [31] Kanninnen, M. F., Atkinson, C., Feddersen, C. E., A fatigue crack growth analysis method based on a single representation of crack tip plasticity, ASTM STP 637 (1977) 122-140. DOI: 10.1520/STP637-EB. [32] Budianski, B., Hucthinson, J. W., Analysis of closure in fatigue crack growth, J. Appl. Mech., 45 (1978) 267-276. DOI 10.1115/1.34.24286. [33] de Koning, A. U., A simple crack closure model for predictions of fatigue crack growth rates under variable amplitude loading, ASTM STP 743, (1981) 63-85. DOI: 10.1520/STP743-EB. [34] Corbly, D. M., Packman, P. F., On the influence of single and multiple peak overloads on fatigue crack propagation in 7075-T6511 aluminum, Eng. Fracture Mechanics, 5 (1973) 479-497. DOI:10.1016/0013-7944(73)90034-9. [35] Swedlow, J. L., Effects and plastic flow in cracked plates, PhD Thesis, California Institute of Technology, Pasadena, USA, (1965). [36] Schijve, J., Brock, D., de Rigle, P., NLR, Report M2094, Amsterdam, (1962). [37] Hardrarth, H. F., McEvily, A. T., Proc. Crack Propagation Simposium, Cranfield, 1 (1961). [38] von Ewu, E., Hertzberg, R., Roberts, R., Delay defects in fatigue crack propagation, Nat. Symposium F.M., 7 (1971). [39] Hudson, C. M., Effect of stress ratio on fatigue-crack growth in 7075-T6 and 2024-T3 alumina-alloy specimens. TNL-5390, NASA, (1969). [40] Crooker, T. W., Effect of T. C. Cycling on fatigue grade growth in high strength alloys, NRL Report 7220, (1971). [41] Hudson, C.M., Hardrath, H. F., Effects of changing stress amplitude on the rate of fatigue-crack propagation in two aluminum alloys, NASA TN D-960, (1961). [42] Mcmillan, J. C., Pelloux, R. M., ASTM STP 415 (1966) 505-532. DOI: 10.1520/STP415-EB. [43] Ricardo, L. C. H., Pimenta, P. M.; Spinelli D., Andrade, A. H. P., Crack closure simulation by finite element method; In: Blom, A. F (Ed.), Emas Publishing, Stockholm, Fatigue 2002, 4 (2002) 2863-2869. [44] Christensen, R. H., Fatigue crack growth affected by metal fragments wedged between opening closing crack surface, Appl. Mater. Res., 2 (1963) 207-210. [45] Elber W., Equivalent constant amplitude concept for fatigue crack growth under spectrum loading, ASTM STP 595 (1976) 236-250. DOI: 10.1520/STP595-EB. [46] Newman J. C. Jr., Finite element analysis of fatigue crack propagation, including the effect C-(T) of crack closure, PhD Thesis, Virginia Polytechnic Institute, (1974). [47] Newman, J. C. Jr.; Armen, H. Jr. Elastic-plastic analysis of fatigue crack under cyclic loading, AIAA Journal, 13 (1975) 1017-1023. DOI: 10.2514/3.60499.

RkJQdWJsaXNoZXIy MjM0NDE=