Issue 43

F. Berto et alii, Frattura ed Integrità Strutturale, 43 (2018) 1-32; DOI: 10.3221/IGF-ESIS.43.01 31 [117] Ko, S.J., Kim, Y.J., High temperature fatigue behaviors of a cast ferritic stainless steel, Mat. Sci. Eng. A Struct., 534 (2012) 7-12. [118] Altenberger, I., Nalla, R.K., Sano, Y., Wagner, L., Ritchie, R.O., On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti–6Al–4V at elevated temperatures up to 550 °C, Int. J. Fatigue, 44 (2012) 292-302. [119] Chen, Q., Kawagoishi, N., Nisitani, H., Evaluation of notched fatigue strength at elevated temperature by linear notch mechanics, Int. J. Fatigue, 21 (1999) 925-931. [120] Kawagoishi, N., Chen, Q., Nisitani, H., Fatigue strength of Inconel 718 at elevated temperatures, Fatigue Fract. Eng. Mater. Struct., 23 (2000) 209–216. [121] Shi, D.Q., Hu, X.A., Wang, J.K., Yu, H.C., Yang, X.G., Huang, J., Effect of notch on fatigue behaviour of a directionally solidified superalloy at high temperature, Fatigue Fract. Eng. M, 36 (2013) 1288-1297. [122] Berto, F., Lazzarin, P., Gallo, P., High-temperature fatigue strength of a copper-cobalt-beryllium alloy, J. Strain Anal. Eng. Des., 49(4) (2013) 244-256. [123] Berto, F., Gallo, P., Lazzarin, P., High temperature fatigue tests of un-notched and notched specimens made of 40CrMoV13. 9 steel, Mater. Des., 63 (2014) 609-619. [124] Berto, F., Lazzarin, P., Marangon, C., Fatigue strength of notched specimens made of 40CrMoV13.9 under multiaxial loading, Mater. Des., 54 (2014) 57-66. [125] Gallo, P., Berto, F., Advanced Materials for Applications at High Temperature: Fatigue Assessment by Means of Local Strain Energy Density, Adv. Eng. Mater., 18 (2015) 2010-2017. [126] Gallo, P., Berto, F., Glinka, G., Generalized approach to estimation of strains and stresses at blunt V-notches under non-localized creep, Fatigue Fract. Eng. Mater. Struct., 39(3) (2016) 292-306. [127] Kitamura, T., Sumigawa, T., Hirakata, H. and Shimada, T., Fracture Nanomechanics, Second Edition, Pan Stanford Publishing, Singapore (2015). [128] Wang, K.F., Wang, B.L., Kitamura, T., A review on the application of modified continuum models in modeling and simulation of nanostructures, Acta Mech. Sin., 32 (2015) 83-100. [129] Van Truong, D., Van Thanh, V., Hirakata, H., Kitamura, T., Interfacial fatigue fracture criterion of bimaterial in submicron scale, Microelectron. Eng., 140 (2015) 23–28. [130] Guo, L., Kitamura, T., Yan, Y., Sumigawa, T., Huang, K., Fracture mechanics investigation on crack propagation in the nano-multilayered materials, Int. J. Solids Struct., 64-65 (2015) 208–220. [131] Fang, H., Shiohara, R., Sumigawa, T., Kitamura, T., Size dependence of fatigue damage in sub-micrometer single crystal gold, Mater. Sci. Eng. A, 618 (2014) 416–423. [132] Kishimoto, K., Yan, Y., Sumigawa, T., Kitamura, T., Mixed-mode crack initiation at the edge of Cu/Si interface due to nanoscale stress concentration, Eng. Fract. Mech., 96 (2012) 72–81. [133] Ando, T., Li, X., Nakao, S., Kasai, T., Tanaka, H., Shikida, M., Sato, K., Fracture toughness measurement of thin- film silicon. Fatigue Fract. Eng. Mater. Struct., 28 (2005) 687–694. [134] Li, X., Kasai, T., Nakao, S., Tanaka, H., Ando, T., Shikida, M., Kazuo, S., Measurement for fracture toughness of single crystal silicon film with tensile test, Sensors Actuators, A Phys., 119 (2005) 229–235. [135] Shimada, T., Kitamura, T., Fracture Mechanics at Atomic Scales. In: Altenbach, H., Matsuda, T. and Okumura, D. (eds.). Adv. Struct. Mater., 64, Springer International Publishing, Cham, (2015) 379–396. [136] Sumigawa, T., Ashida, S., Tanaka, S., Sanada, K., Kitamura, T., Fracture toughness of silicon in nanometer-scale singular stress field, Eng. Fract. Mech., 150 (2015) 161–167. [137] Gallo, P., Sumigawa, T., Kitamura, T., Berto, F., Evaluation of the strain energy density control volume for a nanoscale singular stress field, Fatigue Fract. Eng. Mater. Struct., 39(12) (2016) 1557–1564. [138] Razavi, S.M.J., Ferro, P., Berto, F., Fatigue assessment of Ti–6Al–4V circular notched specimens produced by selective laser melting, Metals, 7(8) (2017) 291. [139] Fergani, O., Berto, F., Welo, T., Liang, S.Y., Analytical modelling of residual stress in additive manufacturing, Fatigue Fract. Eng. Mater. Struct., 40(6) (2017) 971-978. [140] Razavi, S.M.J., Ferro, P., Berto, F., Torgersen, J., Fatigue strength of blunt V-notched specimens produced by selective laser melting of Ti-6Al-4V, Theor. Appl. Fract. Mech., in press. DOI: 10.1016/j.tafmec.2017.06.021. [141] Torgersen, J., Qin, X.H., Li, Z., Ovsianikov, A., Liska, R., Stampfl, J., Hydrogels for Two ‐ Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix, Adv. Func. Mater., 23(36) (2013) 4542-4554. [142] Li, Z., Pucher, N., Cicha, K., Torgersen, J., Ligon, S., Ajami, A., Husinsky, W., Rosspeintner, A., Vauthey, E., Naumov, S., Scherzer, T., Stampfl, J., Liska, R., A straightforward synthesis and structure–activity relationship of highly efficient initiators for two-photon polymerization, Macromolecules, 46(2) (2013) 352-361.

RkJQdWJsaXNoZXIy MjM0NDE=