Issue 43

F. Berto et alii, Frattura ed Integrità Strutturale, 43 (2018) 1-32; DOI: 10.3221/IGF-ESIS.43.01 27 [2] Sih, G.C., Tang, X.S., Scaling of volume energy density function reflecting damage by singularities at macro-, meso- and microscopic level, Theor. Appl. Fract. Mech., 43 (2005) 211-231. [3] Sih, G.C., Multiscaling in molecular and continuum mechanics: interaction of time and size from macro to nano. Dordrecht: Springer; 2007. [4] Sih, G.C., Crack tip mechanics based on progressive damage of arrow: Hierarchy of singularities and multiscale segments, Theor. Appl. Fract. Mech., 51 (2009) 11-32 [5] Sih, G.C., Ideomechanics of transitory and dissipative systems associated with length, velocity, mass and energy, Theor. Appl. Fract. Mech., 51 (2009) 149-160. [6] Sih, G.C., Energy absorption and dissipation associated with mass activation and deactivation for open systems, Theor. Appl. Fract. Mech., 52(2) (2009) 63-71. [7] Lazzarin, P., Zambardi, R., A finite-volume-energy based approach to predict the static and fatigue behaviour of components with sharp V-shaped notches, Int. J. Fract., 112 (2001) 275-298. [8] Lazzarin, P., Lassen, T., Livieri, P., A Notch Stress Intensity approach applied to fatigue life predictions of welded joints with different local toe geometry, Fatigue Fract. Eng. Mater. Struct., 26 (2003) 49-58. [9] Lazzarin, P., Sonsino, C.M., Zambardi, R., A notch stress intensity approach to assess the multiaxial fatigue strength of welded tube-to flange joints subjected to combined loadings, Fatigue Fract. Eng. Mater. Struct., 27 (2004) 127-140. [10] Livieri, P., Lazzarin, P., Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values, Int. J. Fract., 133 (2005) 247-278. [11] Lazzarin, P., Berto, F., Some expressions for the strain energy in a finite volume surrounding the root of blunt V- notches, Int. J. Fract., 135 (2005) 161-185. [12] Lazzarin, P., Berto, F. From Neuber’s elementary volume to Kitagawa and Atzori’s diagrams: an interpretation based on local energy, Int. J. Fract., 135 (2005) L33-L38. [13] Lazzarin, P., Livieri, P., Berto, F., Zappalorto, M., Local strain energy density and fatigue strength of welded joints under uniaxial and multiaxial loading, Eng. Fract. Mech., 75 (2008) 1875-1889. [14] Lazzarin, P., Berto, F., Control volumes and strain energy density under small and large scale yielding due to tensile and torsion loading, Fatigue Fract. Eng. Mater. Struct., 31 (2008) 95-107. [15] Berto, F., Lazzarin, P., A review of the volume-based Strain Energy Density approach applied to V-notches and welded Structures, Theor. Appl. Fract. Mech., 52 (2009) 183-194. [16] Berto, F., Lazzarin, P., Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches, Mater. Sci. Eng. R, 75 (2014) 1-49. [17] Neuber, H., Kerbspannungslehre. Springer-Verlag, Berlin, (1958) 2nd edn. [18] Neuber, H., Űber die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen, Konstruktion 20 (1968) 245-251. [19] Neuber, H., Kerbspannungslehre. Springer-Verlag, Berlin, (1985) 3rd edn. [20] Radaj, D., Näherungsweise Berechnung der Formzahl von Schweiβnähten. Schw Schn, 21 (1969) 97-105 and 21 (1969) 151-158. [21] Radaj, D., Design and Analysis of Fatigue Resistant Welded Structures, Cambridge: Abington Publishing; (1990). [22] Radaj, D., Ermüdungsfestigkeit, 2nd ed. Berlin: Springer Verlag; (2003). [23] Radaj, D., Sonsino, C.M., Fricke, W., Fatigue Assessment of Welded Joints by Local Approaches, 2nd ed. Cambridge: Woodhead Publishing; Boca Raton, FL: CRC Press; (2006). [24] Berto, F., Fictitious notch rounding concept applied to V-notches with end holes under mode 3 loading, Int. J. Fatigue, 38 (2012) 188–193. [25] Berto, F., Lazzarin, P., Radaj, D., Fictitious notch rounding concept applied to V-notches with root holes subjected to in-plane shear loading, Eng. Fract. Mech., 79 (2012) 281-294. [26] Radaj, D., Lazzarin, P., Berto, F., Generalised Neuber concept of fictitious notch rounding, Int. J. Fatigue, 51 (2013) 105-115. [27] McClintock, F.A., Ductile fracture instability in shear, J. Appl. Mech., 25 (1958) 582-588. [28] Ritchie, R.O., Knott, J., Rice, J.R., On the relation between critical tensile stress in fracture toughness in mild steel, J. Mech. Phys. Solids, 21 (1973) 395-410. [29] Knésl, Z., A criterion of V-notch stability, Int. J. Fract., 48 (1991) R79-R83. [30] Seweryn, A., Brittle fracture criterion for structures with sharp notches, Eng. Fract. Mech., 47 (1994) 673-681. [31] Novozhilov, V.V., On necessary and sufficient criterion of brittle fracture, Prikladnaja Matematika i Mechanika 33 (1969) 212-222.

RkJQdWJsaXNoZXIy MjM0NDE=