Issue 43

M. Tocci et alii, Frattura ed Integrità Strutturale, 43 (2018) 218-230; DOI: 10.3221/IGF-ESIS.43.17 229 [6] Kwok, C. T., Cheng, F. T., Man, H. C., Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5% NaCl solution, Mater. Sci. Eng. A, 290 (2000) 145-154. [7] dos Santos, J. F., Garzón, C. M., Tschiptschin, A. P. Improvement of the cavitation erosion resistance of an AISI 304L austenitic stainless steel by high temperature gas nitriding, Mater. Sci. Eng. A, 382 (2004) 378-386. [8] Hattori, S., Kitagawa, T., Analysis of cavitation erosion resistance of cast iron andnonferrous metals based on database and comparison with carbon steel data, Wear, 269 (2010) 443-448. [9] Neville, A., McDougall, B. A. B., Erosion– and cavitation–corrosion of titanium and its alloys, Wear, 250 (2001) 726- 735. [10] Li, H., Cui, Z., Li, Z., Zhu, S., Yang, X., Effect of gas nitriding treatment on cavitation erosion behavior of commercially pure Ti and Ti-6Al-4V alloy, Surf. Coat. Technol., 221 (2013) 29-36. [11] Richman, R. H., McNaughton, W. P., Correlation of cavitation erosion behavior with mechanical properties of metals, Wear, 140 (1990) 63-82. [12] Fortes Patella, R., Choffat, T., Reboud, J.-L., Archer, A., Mass loss simulation in cavitation erosion: Fatigue criterion approach, Wear, 300 (2013) 205-215. [13] Sreedhar, B. K., Albert, S. K., Pandit, A. B., Cavitation damage: Theory and measurements - A review, Wear, 372-373 (2017) 177-196. [14] Vaidya, S., Preece, C. M., Cavitation Erosion of Age-Hardenable Aluminum Alloys, Metall. Trans. A, 9A (1978) 299- 307. [15] Pola, A., Montesano, L., Tocci, M., La Vecchia, G. M., Influence of Ultrasound Treatment on Cavitation Erosion Resistance of AlSi7 Alloy, Materials, 10 (2017) 256. [16] Ye, H., An Overview of the Development of Al-Si-Alloy Based Material for Engine Applications, J. Mater. Eng. Perform., 12 (2003) 288-297. [17] Lee, S. J., Kim, K. H., Kim, S. J., Surface Analysis of Al-Mg Alloy Series for Ship after Cavitation Test, Surf. Interface Anal., 44 (2011) 1389-1392. [18] Laguna-Camacho, J. R., Lewis, R., Vite-Torres, M., Méndez-Méndez, J. V., A study of cavitation erosion on engineering materials, Wear, 301 (2013) 467-476. [19] Tomlinson, W. J., Matthews, S. J., Cavitation erosion of aluminium alloys, J. Mater. Sci., 29 (1994) 1101-1108. [20] Gottardi, G., Tocci, M., Montesano, M., Pola, A., Cavitation erosion behaviour of an innovative aluminium alloy for Hybrid Aluminium Forging, Wear, 394-395 (2018) 1-10. [21] Dwivedi, D. K., Sharma, R., Kumar, A., Influence of silicon content and heat treatment parameters on mechanical properties of cast Al–Si–Mg alloys, Int. J. Cast Metal. Res., 19 (2006) 275-282. [22] Wang, Y., Liao, H., Wu, Y., Yang, J., Effect of Si content on microstructure and mechanical properties of Al–Si–Mg alloys, Mater. Des., 53 (2014) 634-638. [23] Ceschini, L., Boromei, I., Morri, A., Seifeddine, S., Svensson, I. L., Effect of Fe content and microstructural features on the tensile and fatigue properties of the Al-Si10-Cu2 alloy, Mater. Des., 36 (2012) 522-528. [24] Taylor, J. A., Iron-containing intermetallic phases in Al-Si based casting alloys, Proc. Mat. Sci., 1 (2012) 19-33. [25] Tocci, M., Donnini, R., Angella, G., Pola, A., Effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy, Mater. Charact., 123 (2017) 75-82. [26] Basavakumar, K. G., Mukunda, P. G., Chakraborty, M., Influence of grain refinement and modification on microstructure and mechanical properties of Al-7Si and Al-7Si-2.5Cu cast alloys, Mater. Charact., 59 (2008) 283-289. [27] Casari, D., Merlin, M., Garagnani, G. L., A comparative study on the effects of three commercial Ti-B-based grain refiners on the impact properties of A356 cast aluminium alloy, J. Mater. Sci., 48 (2013) 4365-4377. [28] Zhao, W., Zhang, L., Wang, Z., Yan, H., Study on Defects of A356 Aluminum Alloy Wheel, Adv. Mat. Res., 189-193 (2011) 3862-3865. [29] Tomlinson, W. J., Matthews, S. J., Cavitation erosion of aluminium alloy matrix/ceramic composites, J. Mater. Sci. Lett., 13 (1994) 170-173. [30] Ćosić, M., Dojčinović, M., Aćimović-Pavlović, Z., Fabrication and behaviour of Al-Si/SiC composite in cavitation conditions, Int. J. Cast. Metal. Res., 27 (2014) 49–55. [31] Sjolander, E., Seifeddine, S., Optimisation of solution treatment of cast Al–Si–Cu alloys, Mater. Des., 31 (2010) 44-49. [32] Han, Y., Samuel, A. M., Doty, H. W., Valtierra, S., Samuel, F. H., Optimizing the tensile properties of Al–Si–Cu–Mg 319-type alloys: Role of solution heat treatment, Mater. Des., 58 (2014) 426-438. [33] Tocci, M., Pola, A., Raza, L., Armellin, L., Afeltra, U., Optimization of heat treatment parameters for a nonconventional Al-Si-Mg alloy with cr addition by DoE method, Metall. Ital., 108 (2016) 141-144.

RkJQdWJsaXNoZXIy MjM0NDE=