Issue 43

B. Saadouki et alii, Frattura ed Integrità Strutturale, 43 (2018) 133-145; DOI: 10.3221/IGF-ESIS.43.10 144 [8] Goto, M., Han, S.Z., Lim, S.H., Kitamura, J., Fujimura, T., Ahn, J.H., Yamamoto, T., Kim, S., Lee, J., Role of microstructure on initiation and propagation of fatigue cracks in precipitate strengthened Cu–Ni–Si alloy, International Journal of Fatigue, 87(2016) 15–21. DOI: 10.2472/jsms.63.401 [9] Zhao, D.M., Dong, Q.M., Liu, P., Kang, B.X., Huang, J.L., JIN, Z.H., Structure and strength of the age hardened Cu- Ni-Si alloy, Materials Chemistry and Physics, 79(2003) 81-86. DOI: 10.1016/S0254-0584(02)00451-0. [10] Fujiwara, H., Sato, T., Kamio, A., Effect of alloy composition on precipitation behavior in Cu-Ni-Si alloys, Journal of the Japan Institute of Metals, 62 (1998) 301-309. DOI: 10.2472/jsms.63.401. [11] Khereddine, A., Hadj Larbi, F., and al, Microstructures and textures of a Cu–Ni–Si alloy processed by high-pressure torsion, Journal of Alloys and Compounds, 574(2013) 361-367. DOI: 10.1016/j.jallcom.2013.05.051. [12] Hadj Larbi, F., Azzeddine, H., Baudin, T., et al, Microstructure and texture evolution in a Cu–Ni–Si alloy processed by equal-channel angular pressing, Journal of Alloys and Compounds, 638(2015) 88-94. DOI: 10.1016/j.jallcom.2015.03.062. [13] Ageladarakis, P., O'Dowd, N., Webster, G., Tensile and fracture toughness test of CuNiSi at room and cryogenic temperatures, Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking, Available from British Library Document Supply Centre- DSC: 4672.2625(99/01). [14] Reed, R., Fickett, F.R., Summers, L.T., Stieg, M., Advances in Cryogenic Engineering Materials, A40 (1994). [15] Castillo, E., Fernández-Canteli, A., A unified statistical methodology for modeling fatigue damage, Springer (2009). [16] Raposo, P., Correia, J.A.F.O., De Jesus, A.M.P., Calçada, R.A.B., Lesiuk, G., Hebdon, M., Fernández-Canteli, A., Probabilistic fatigue S-N curves derivation for notched components, Frattura ed Integrità Strutturale, 42 (2017) 105- 118. DOI: 10.3221/IGF-ESIS.42.12 [17] Correia, J.A.F.O., Huffman, P., De Jesus, A.M.P., Cicero, S., Fernández-Canteli, A., Berto, F., Glinka, G., Unified two-stage fatigue methodology based on a probabilistic damage model applied to structural details, Theoretical and Applied Fracture Mechanics (in press) (2017). DOI: 10.1016/j.tafmec.2017.09.004. [18] Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data. ASTM E739 – 10. [19] Lieurade, H.P., Rupture par fatigue des aciers . Ed. Institut de Recherches de la Sidérurgie Française, collection IRSID- OTUA (1991). [20] Inglis, N.P., Hysteresis and fatigue of Wöhler rotating cantiveler specimen, The Metallurgist, (1927) 23-27. [21] Pineau, A., Mécanismes d’accommodation et de fissuration en fatigue oligocyclique, Mécanique Matériaux Electricité, 323/324 (1976) 6-14. [22] Smith, R.W., Hirschberg, M.H., Manson, S.S., Fatigue behavior of materials under strain cycling in low and intermediate life range, NASA-TN-D-1574, N-63-14250, (1963). [23] Morrow, J., Cyclic plastic strain energy and fatigue of metals, internal friction, damping and fatigue of metals, ASTM (1965) 48-87. [24] Gallet, G., Lieurade, H.P., Prévision du comportement en fatigue plastique des aciers de construction mécanique à partir de leurs caractéristiques de traction, Rapport IRSID (IRSID, Saint-Germain-en-Laye), (l977). [25] Halford, G.R., Manson, S.S., Symposium on fatigue, Londres (1967). [26] Gallet, G., Lieurade, H.P., Influence de la structure métallographique d'un acier au nickel - chrome – molybdène sur son comportement en fatigue plastique, Communication présentée aux Journées Métallurgiques d'Automne organisées par la Société Française de Métallurgie, (1974). [27] Lemaitre, J., Chaboche, J.L., Mécanique des matériaux solides, Science Sup - 2éme édition, Dunod (2004). [28] Tomkins, B., Fatigue crack propagation analysis, Philosophical magazine, 155 (1968) 1041-1065. N OMENCLATURE A (%) elongation at fracture b fatigue resistance exponent c fatigue ductility exponent E Young module K monotonic hardening coefficient K’ cyclic hardening coefficient N monotonic hardening exponent n’ cyclic hardening exponent

RkJQdWJsaXNoZXIy MjM0NDE=