Issue 43

M. Fakhri et alii, Frattura ed Integrità Strutturale, 43 (2018) 113-132; DOI: 10.3221/IGF-ESIS.43.09 131 [42] Aliha, M.R.M., Bahmani, A., Akhondi, S., A novel test specimen for investigating the mixed mode I+ III fracture toughness of hot mix asphalt composites–Experimental and theoretical study, International Journal of Solids and Structures, 90 (2016) 167-177. [43] Ozer, H., Al-Qadi, I.L., Lambros, J., El-Khatib, A., Singhvi, P., Doll, B., Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters, Construction and Building Materials, 115 (2016) 390-401. [44] Bazant, Z.P., Planas, J., Fracture and size effect in concrete and other quasibrittle materials, CRC press, 16 (1997). [45] Aliha, M.R.M., Sarbijan, M., Bahmani, A., Fracture toughness determination of modified HMA mixtures with two novel disc shape configurations, Construction and Building Materials, 155 (2017) 789-799. [46] Razavi, S., Aliha, M.R.M., Berto, F., Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens, Theoretical and Applied Fracture Mechanics, (2017). [47] Majidzadeh, K., Kauffmann, E., Ramsamooj, D., Application of fracture mechanics in the analysis of pavement fatigue, in Association of Asphalt Paving Technologists Proc, (1971). [48] Aglan, H., Figueroa, J., Damage-evolution approach to fatigue cracking in pavements, Journal of engineering mechanics, 119 (1993) 1243-1259. [49] Aragão, F., Kim, Y.R., Mode I fracture characterization of bituminous paving mixtures at intermediate service temperatures, Experimental mechanics, 52 (2012) 1423-1434. [50] Dai, F., Wei, M., Xu, N., Ma, Y., Yang, D., Numerical assessment of the progressive rock fracture mechanism of cracked chevron notched Brazilian disc specimens, Rock Mechanics and Rock Engineering, 48 (2015) 463-479. [51] Xu, Y., Dai, F., Zhao, T., Xu, N.-w., Liu, Y., Fracture toughness determination of cracked chevron notched Brazilian disc rock specimen via Griffith energy criterion incorporating realistic fracture profiles, Rock Mechanics and Rock Engineering, 49 (2016) 3083-3093. [52] Aliha, M.R.M., Pakzad, R., Ayatollahi, M., Numerical analyses of a cracked straight-through flattened Brazilian disk specimen under mixed-mode loading, Journal of Engineering Mechanics, 140 (2013) 219-224 . [53] Mirsayar, M., Berto, F., Aliha, M.R.M., Park, P., Strain-based criteria for mixed-mode fracture of polycrystalline graphite, Engineering Fracture Mechanics, 156 (2016) 114-123. [54] Aliha, M.R.M., Mahdavi, E., Ayatollahi, M.R., The influence of specimen type on tensile fracture toughness of rock materials, Pure and Applied Geophysics, 174 (2017) 1237-1253. [55] Im, S., Characterization of viscoelastic and fracture properties of asphaltic materials in multiple length scales, (2012). [56] Marasteanu, M., Zofka, A., Turos, M., Li, X., Velasquez, R., Li, X., Investigation of low temperature cracking in asphalt pavements national pooled fund study, 776 (2007). [57] Rahul-Kumar, P. Rahul-Kumar, Jagota, A., Bennison, S., Saigal, S., Muralidhar, S., Polymer interfacial fracture simulations using cohesive elements, Acta materialia, 47 (1999) 4161-4169. [58] Lee, S.-J., Amirkhanian, S.N., Putman, B.J., Kim, K.W., Laboratory study of the effects of compaction on the volumetric and rutting properties of CRM asphalt mixtures, Journal of Materials in Civil Engineering, 19 (2007) 1079-1089. [59] Li, X., Braham, A.F., Marasteanu, M.O., Buttlar, W.G., Williams, R.C., Effect of factors affecting fracture energy of asphalt concrete at low temperature, Road Materials and Pavement Design, 9 (2008) 397-416. [60] Masad, E., Jandhyala, V., Dasgupta, N., Somadevan, N., Shashidhar, N., Characterization of air void distribution in asphalt mixes using X-ray computed tomography, Journal of materials in civil engineering, 14 (2002) 122-129. [61] Ameri, M., Mansourian, A., Pirmohammad, S., Aliha, M.R.M., Ayatollahi, M., Mixed mode fracture resistance of asphalt concrete mixtures, Engineering Fracture Mechanics, 93 (2012) 153-167. [62] Hillerborg, A., The theoretical basis of a method to determine the fracture energy of concrete, Materials and structures, 18 (1985) 291-296. [63] Hillerborg, A., Modéer, M., Petersson, P.-E., Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and concrete research, 6 (1976) 773-781. [64] Struct, M., Determination of Fracture Energy of Mortar and Concrete by Means of Three-Point Bend Tests on Notched Beams, RILEM TC-50 FMC (Draft Recommendation), 18(106) (1985) 285–290. [65] Bazant, Z.P., Analysis of work-of-fracture method for measuring fracture energy of concrete, Journal of Engineering Mechanics, 122 (1996) 138-144. [66] Elices, M., Guinea, G., Planas, J., Measurement of the fracture energy using three-point bend tests: Part 3—influence of cutting theP-δ tail, Materials and Structures, 25 (1992) 327-334. [67] Guinea, G., Planas, J., Elices, M., Measurement of the fracture energy using three-point bend tests: Part 1—Influence of experimental procedures, Materials and Structures, 25 (1992) 212-218.

RkJQdWJsaXNoZXIy MjM0NDE=