Issue 42

A. Strafella et alii, Frattura ed Integrità Strutturale, 42 (2017) 352-365; DOI: 10.3221/IGF-ESIS.42.36 365 [5] Wilson, F. G., Pickering, F. B., A study of zone formation in an austenitic steel containing 4% Titanium. Acta Metallurgica, 16 (1968) 115-131 [6] Daenner, W., A comparison of AISI type 316 and German type DIN 1.4970 stainless steel with regard to the first- wall lifetime. Journal of Nuclear Material. North. Holland Publishing Company, 103 & 104 (1981) 121-126 [7] Caro, M., Woloshun, K., Rubio, F. and Maloy, S., Materials Selection for the Lead-Bismuth Corrosion and Erosion Tests in DELTA Loop Los Alamos National Laboratory, (2013). [8] NEA Expert Group on Heavy Liquid Metal Technologies. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermalhydraulics and Technologies- Nuclear Energy Agency Organisation For Economic Co-Operation And Development, (2015) 487-570. [9] Nelson, D. E., Baeslack, W. A., Characterization of the Weld Structure in a Duplex Stainless Steel Using Color Metallography Metallography, 18 (1985) 215-225 . [10] Radzikowska, J.M., Metallography and Microstructures of Cast Iron, Metallography and Microstructures, ASM Handbook, ASM International, 9 (2004) 565–587. [11] Abou Zahra, D-A., Schroeder, H. The dependence of the creep properties of DIN 1.4970 austenitic stainless steel at 973 K on different thermomechanical pre-treatments, Journal of Nuclear Materials, North.Holland Publishing Company, 107 (1982) 97-103. [12] Hough, R.R., Rolls, R., Creep fracture phenomena in iron embrittled by liquid copper, Journal of Material Science, 6 (1971) 1493-1498. [13] Strafella, A., Coglitore, A., Salernitano, E., Creep behaviour of 15-15Ti(Si) austenitic steel in air and in liquid lead at 550°C, Procedia Structural Integrity, 3 (2017) 484-497.

RkJQdWJsaXNoZXIy MjM0NDE=