Issue 42

M. Peron et alii, Frattura ed Integrità Strutturale, 42 (2017) 223-230; DOI: 10.3221/IGF-ESIS.42.24 230 [8] Ayatollahi, M.R., Rashidi Moghaddam, M., Razavi, S.M.J., Berto, F., Geometry effects on fracture trajectory of PMMA samples under pure mode-I loading. Eng. Fract. Mech., 163 (2016) 449–461. [9] Rashidi Moghaddam, M., Ayatollahi, M.R., Razavi, S.M.J., Berto, F., Mode II Brittle Fracture Assessment Using an Energy Based Criterion, Phys. Mesomec. (in press). [10] Lazzarin, P. and Zambardi, R., A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches, Int. J. Fract., 112 (2001) 275–298. [11] Berto, F., Lazzarin, P. and Ayatollahi, M. R., Brittle fracture of sharp and blunt V-notches in isostatic graphite under torsion loading, Carbon N. Y., 50 (2012) 1942–1952. [12] Radaj, D., Berto, F., and Lazzarin, P., Local fatigue strength parameters for welded joints based on strain energy density with inclusion of small-size notches, Eng. Fract. Mech., 76 (2009) 1109–1130. [13] Berto, F., Croccolo, D. and Cuppini, R., Fatigue strength of a fork-pin equivalent coupling in terms of the local strain energy density, Mater. Des., 29 (2008) 1780–1792. [14] Berto, F. and Barati, E., Fracture assessment of U-notches under three point bending by means of local energy density, Mater. Des., 32 (2011) 822–830. [15] Berto, F. and Ayatollahi, M. R., Fracture assessment of Brazilian disc specimens weakened by blunt V-notches under mixed mode loading by means of local energy, Mater. Des., 32 (2011) 2858–2869. [16] Colussi, M., Berto, F., Mori, K., Narita, F., Effect of the loading rate on the Brittle Fracture of Terfenol-D Specimens in Magnetic Field: Strain Energy Density Approach, Strength Mater, (in press). [17] Beltrami, E., Sulle condizioni di resistenza dei corpi elastici, Rendiconti del Regio Istituto Lombardo XVIII, (1885) 704-714. [18] Yosibash Z., Bussiba A. R., G.I., Failure criteria for brittle elastic materials. Int. J. Fracture, 125 (2004) 307–333. [19] Tiersten, H.F., 1969. Linear piezoelectric plate vibrations: elements of the linear theory of piezoelectricity and the vibrations of piezoelectric plates. Springer, New York, (1969). [20] Wan, Y., Fang, D., Hwang, K.C., Non-linear constitutive relations for magnetostrictive materials, Int. J. Nonlinear Mech., 38 (2003) 1053–1065. [21] Jia, Z., Liu, W., Zhang, Y., Wang, F., G.D., A nonlinear magnetomechanical coupling model of giant magnetostrictive thin films at low magnetic fields, Sens. Actuators A, 128 (2006) 158-164. [22] Cao, R., Lei, M.X., Chen, J.H., Zhang, J., Effects of loading rate on damage and fracture behavior of TiAl alloys. Mater. Sci. Eng., 465 (2007) 183–193. [23] Shindo, Y., Mori, K., Narita, F., Electromagneto-mechanical fields of giant magnetostrictive / piezoelectric laminates. Acta Mech., 212 (2010) 253-261. [24] Shindo, Y., Narita, F., Mori, K., Nakamura, T., Nonlinear bending response of giant magnetostrictive laminated actuators in magnetic fields, J. Mech. Mater. Struct., 4 (2009) 941–949. [25] Narita, F., Morikawa, Y., Shindo, Y., Sato, M., Dynamic fatigue behavior of cracked piezoelectric ceramics in three- point bending under AC electric fields, J. Eur. Ceram. Soc., 32 (2012) 3759–3766. [26] Gallo, P., Berto, F., Glinka, G Generalized approach to estimation of strains and stresses at blunt V-notches under non-localized creep, Fatigue Fract. Eng. Mater. Struct, 39 (2016) 292-306.

RkJQdWJsaXNoZXIy MjM0NDE=