Issue 41

A. S. Cruces et alii, Frattura ed Integrità Strutturale, 41 (2017) 54-61; DOI: 10.3221/IGF-ESIS.41.08 61 [6] Lopez-Crespo P, Mostafavi M, Steuwer A, Kelleher JF, Buslaps T, Withers PJ. Characterisation of overloads in fatigue by 2D strain mapping at the surface and in the bulk. Fatigue Fract Eng Mater Struct 2016;39:1040–8. [7] Pippan R, Grosinger W. Fatigue crack closure: From LCF to small scale yielding. Int J Fatigue 2013;46:41–8. [8] Pippan R, Hohenwarter A. Fatigue crack closure: a review of the physical phenomena. Fatigue Fract Eng Mater Struct 2017;40:471–95. doi:10.1111/ffe.12578. [9] Skorupa M, Skorupa A, Schijve J, Machniewicz T, Korbut P. Effect of specimen thickness and stress ratio on fatigue crack growth after a single overload cycle on structural steel. Eur. Conf. Fract. ECF 13, San Sebastian: 2000. [10] Camas D, Lopez-Crespo P, Gonzalez-Herrera A, Moreno B. Numerical and experimental study of the plastic zone in cracked specimens. Eng Fract Mech 2017. doi:10.1016/j.engfracmech.2017.02.016. [11] Lu S, Bao R, Zhang T, Fei B. A link-up resulted fatigue crack branching in Al–Cu–Mg alloy. Int J Fatigue 2016;92:459–69. doi:10.1016/j.ijfatigue.2016.02.036. [12] Zitounis V, Irving P. Fatigue crack acceleration effects during tensile underloads in 7010 and 8090 aluminium alloys. Int J Fatigue 2007;29:108–18. doi:10.1016/j.ijfatigue.2006.02.048. [13] Lopez-Crespo P, Steuwer A, Buslaps T, Tai YH, Lopez-Moreno A, Yates JR, et al. Measuring overload effects during fatigue crack growth in bainitic steel by synchrotron X-ray diffraction. Int J Fatigue 2015;71:11–6. [14] Salvati E, O’Connor S, Sui T, Nowell D, Korsunsky AM. A study of overload effect on fatigue crack propagation using EBSD, FIB–DIC and FEM methods. Eng Fract Mech 2016;167:210–23. doi:10.1016/j.engfracmech.2016.04.034. [15] Toda H, Sinclair I, Buffière J-Y, Maire E, Khor KH, Gregson P, et al. A 3D measurement procedure for internal local crack driving forces via synchrotron X-ray microtomography. Acta Mater 2004;52:1305–17. doi:10.1016/j.actamat.2003.11.014. [16] Wang YY, Yao WX. Evaluation and comparison of several multiaxial fatigue criteria. Int J Fatigue 2004;26:17–25. [17] Socie DF, Marquis GB. Multiaxial Fatigue. Warrendale, PA (USA): Society of Automotive Engineers, Inc.; 2000. [18] Gates NR, Fatemi A. Interaction of shear and normal stresses in multiaxial fatigue damage analysis. Frat Ed Integrità Strutt 2016;37:160–5. doi:10.3221/IGF-ESIS.37.22. [19] Suman S, Kallmeyer A, J S. Development of a multiaxial fatigue damage parameter and life prediction methodology for non-proportional loading. Frat Ed Integrità Strutt 2016;38:224–30. doi:10.3221/IGF-ESIS.38.30. [20] Lopez-Crespo P, Garcia-Gonzalez A, Moreno B, Lopez-Moreno A, Zapatero J. Some observations on short fatigue cracks under biaxial fatigue. Theor Appl Fract Mech 2015;80:96–103. [21] Mokhtarishirazabad M, Lopez-Crespo P, Moreno B, Lopez-Moreno A, Zanganeh M. Optical and analytical investigation of overloads in biaxial fatigue cracks. Int J Fatigue 2017. doi:10.1016/j.ijfatigue.2016.12.035. [22] Chaves V. Ecological criteria for the selection of materials in fatigue. Fatigue Fract Eng Mater Struct 2014;37:1034–42. doi:10.1111/ffe.12181. [23] Lopez-Crespo P, Moreno B, Lopez-Moreno A, Zapatero J. Study of crack orientation and fatigue life prediction in biaxial fatigue with critical plane models. Eng Fract Mech 2015;136:115–30. [24] Lopez-Crespo P, Moreno B, Lopez-Moreno A, Zapatero J. Characterisation of crack-tip fields in biaxial fatigue based on high-magnification image correlation and electro-spray technique. Int J Fatigue 2015;71:17–25. [25] Fatemi A, Socie DF. A Critical Plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng Mater Struct 1988;11:149–65.

RkJQdWJsaXNoZXIy MjM0NDE=