Issue 41
P. Gallo et alii, Frattura ed Integrità Strutturale, 41 (2017) 456-463; DOI: 10.3221/IGF-ESIS.41.57 462 [12] Rashidi Moghadam, M., Ayatollahi, M.R., Razavi, S.M.J., Berto, F., Mode II Brittle Fracture Assessment Using an Energy Based Criterion, Phys. Mesomech., (in press). [13] Nuñez, J., Glinka, G., Analysis of non-localized creep induced strains and stresses in notches, Eng. Fract. Mech. 71 (2004) 1791–1803. [14] Neuber, H., Theory of Stress Concentration for Shear-Strained Prismatical Bodies With Arbitrary Nonlinear Stress- Strain Law, J. Appl. Mech., 28 (1961) 544-550. [15] Creager, M., Paris, P., Elastic field equations for blunt cracks with reference to stress corrosion cracking, Int. J. Fract. Mech., 3 (1967) 247–252. [16] Lazzarin, P., Tovo, R., A unified approach to the evaluation of linear elastic stress fields in the neighborhood of cracks and notches, Int. J. Fract., 78 (1996) 3–19. [17] Moftakhar, A.A., Glinka, G., Scarth, D., Kawa, D., Multiaxial stress-strain creep analysis for notches. In: ASTM Special Technical Publication. ASTM (1994) 230–243. [18] Gallo, P., Berto, F., Glinka, G., Generalized approach to estimation of strains and stresses at blunt V-notches under non-localized creep, Fatigue Fract. Eng. Mater. Struct. 39 (2016) 292–306. [19] Neuber, H., 1958. Theory of Notch Stresses. Springer-VErlag, Berlin. [20] Glinka, G., Calculation of inelastic notch-tip strain-stress histories under cyclic loading, Eng. Fract. Mech., 22 (1985) 839–854. [21] Von Mises, R., Mechanik der festen Körper im plastisch- deformablen Zustand, J. Math. Phys., 1 (1913) 582–592. [22] Molski, K., Glinka, G., A method of elastic-plastic stress and strain calculation at a notch root, Mater. Sci. Eng., 50 (1981) 93–100. [23] Berto, F., Gallo, P., Extension of linear elastic strain energy density approach to high temperature fatigue and a synthesis of Cu-Be alloy experimental tests, Eng. Solid Mech. 3 (2015) 111–116. [24] Gallo, P., Berto, F., High temperature fatigue tests and crack growth in 40CrMoV13.9 notched components, Frattura ed Integrita Strutturale, 9 (2015) 180–189. [25] Gallo, P., Berto, F., Advanced Materials for Applications at High Temperature: Fatigue Assessment by Means of Local Strain Energy Density, Adv. Eng. Mater., 18 (2015) 2010-2017. N OMENCLATURE a notch depth C p plastic zone correction factor d distance from the coordinate system origin at which the far field contribution is evaluated E Young’s modulus K Ω strain energy concentration factor K t stress concentration factor K I mode I stress intensity factor r radial coordinate r 0 distance within notch tip and coordinate system origin r p plastic zone radius t time 2 α notch opening angle 22 n c creep strain increment at the notch tip at step n 22 fn c incremental far field creep strain 22 n t increment of total strain Δ r p plastic zone increment 22 n t stress decrement at the notch tip at step n Δ t n time increment ε p0 plastic strain at time t = 0 22 f c creep strain at the far field 22 n c creep strain at the notch tip 22 t time dependent notch tip strain
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=