Issue 41

M. Kurek et alii, Frattura ed Integrità Strutturale, 41 (2017) 24-30; DOI: 10.3221/IGF-ESIS.41.04 30 A CKNOWLEDGMENTS roject financed by the National Science Centre. Decision number: 2016/21/D/ST8/02007 R EFERENCES [1] Carpinteri, A., Fortese, G., Ronchei, C., Scorza, D., Spagnoli, A., Vantadori S., Fatigue life evaluation of metallic structures under multiaxial random loading, International Journal of Fatigue, 90 (2016) 191-199. DOI: 10.1016/j.ijfatigue.2016.05.007. [2] Skibicki, D., Pejkowski, Ł., Low-cycle multiaxial fatigue behaviour and fatigue life prediction for CuZn37 brass using the stress-strain models, International Journal of Fatigue, 102 (2017) 18–36. [3] Wanga, Y., Susmel, L., The Modified Manson–Coffin Curve Method to estimate fatigue lifetime under complex constant and variable amplitude multiaxial fatigue loading, International Journal of Fatigue, 83 (2016) 135–149. [4] Karolczuk, A., Kluger, K., Łagoda, T., A correction in the algorithm of fatigue life calculation based on the critical plane approach, International Journal of Fatigue, 83 (2016) 174-183. [5] Macha, E., Modele matematyczne trwałości zmęczeniowej materiałów w warunkach losowego złożonego stanu naprężenia, Seria: Monografie, Wrocław, 13 (1979) 100 (in Polish). [6] Macha, E., Generalization of strain criteria of multiaxial cyclic fatigue to random loadings, Fortschr. – Ber. VDI, Reiche 18, Nr 52, VDI-Verlag, Dusseldorf, (1988) 102. [7] Łagoda, T., Macha, E., Generalization of energy multiaxial cyclic fatigue criteria to random loadings, Multiaxial Fatigue and Deformation: Testing and Prediction, ASTM STP 1387, American Society for Testing and Materials, West Conshohocken, PA, (2000) 173. [8] Walat, K., Łagoda, T., Lifetime of semi ductile materials through the critical plane approach, International Journal of Fatigue, 67 (2014) 73-77. [9] Carpinteri, A., Spagnoli, A., Vantadori, S., Multiaxial fatigue assessment using a simplified critical plane-based criterion, International Journal of Fatigue, 33(8) (2011) 969-976. DOI: 10.1016/j.ijfatigue.2011.01.004. [10] Macha, E., Generalization of fatigue fracture criteria for multiaxial sinusoidal loadings in the range of random loadings, in: Biaxial and Multiaxial Fatigue, EGF 3, (Edited by M.W. Brown and K.J. Miller), Mechanical Engineering Publications, London, (1989) 425–436. [11] Carpinteri, A., Kurek, M., Łagoda, T., Vantadori, S., Estimation of fatigue life under multiaxial loading by varying the critical plane orientation, International Journal of Fatigue, (2016). DOI: 10.1016/j.ijfatigue.2016.10.028. [12] Mrzygłód, M., Kurek, M., Łagoda, T., The application of the criteria of multiaxial fatigue in the critical plane for the topology optimization, Application of the fictitious radius for the calculation of the fatigue life using the elastic-plastic body model, AIP Conference Proceedings, 1780, Fatigue Failure and Fracture Mechanics XXVI, (2016) 030003-1-6. [13] Kurek, M., Łagoda, T., Including of ratio of fatigue limits from bending and torsion for estimation fatigue life under cyclic loading, Procedia Materials Science, 12 (2016) 30-35. [14] ASTM E 739–91, Standard practice for statistical analysis of linearized stress–life (S–N) and strain life fatigue data, in: Annual Book of ASTM Standards, Philadelphia, 03.01 (1999) 614–628. [15] Nishihara, T., Kawamoto, M., The Strength of Metals under Combined Alternating Bending and Twisting, Memoirs of the College of Engineering, Kyoto Imperial University, Japan, (1941). [16] Muller, A., Zum Festigkeitsverhalten von mehrachsig stochastisch beanspruchten Gußeisen mit Kugelgraphit und Tempergu. Fraunhofer - Institut fur Betriebsfestigkeit, Darmstadt, (1994). P

RkJQdWJsaXNoZXIy MjM0NDE=