Issue 41

G. Meneghetti et alii, Frattura ed Integrità Strutturale, 41 (2017) 299-306; DOI: 10.3221/IGF-ESIS.41.40 306 [7] Klingbeil, NW., A total dissipated energy theory of fatigue crack growth in ductile solids. Int J Fatigue, 25 (2003) 117– 128. [8] Meneghetti, G., Ricotta, M., Evaluating the heat energy dissipated in a small volume surrounding the tip of a fatigue crack. Int. J. Fatigue, 92 (2016) 605-615. DOI: 10.1016/j.ijfatigue.2016.04.001. [9] Meneghetti, G., Ricotta, M., Rigon, D., The heat energy dissipated in a control volume to correlate the fatigue strength of severely notched and cracked stainless steel specimens. Proceedings of Fatigue 2017, 3-5 July 2017, Cambridge (UK). [10] Peterson, RE., Notch sensitivity, in: G. Sines and J. L. Waisman (Eds.) Metal Fatigue, MacGraw-Hill, New York, (1959) 293-306. [11] Tanaka, K., Engineering formulae for fatigue strength reduction due to crack like notches. Int J Fract, 22 (1983) R39– 46. [12] Sheppard, SD., Field effects in fatigue crack initiation: long life fatigue strength. Trans ASME, Journal of Mechanical Design, 113 (1991) 188-94. [13] Taylor, D., Geometrical effects in fatigue: a unifying theoretical model. Int J Fatigue 21 (1999) 413–20. [14] Lazzarin, P., Zambardi, R., A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches, Int J Fract 112 (2001) 275–98. [15] Meneghetti, G., Ricotta, M., Atzori, B., The heat energy dissipated in a control volume to correlate the fatigue strength of bluntly and severely notched stainless steel specimens, Structural Integrity Procedia, 2 (2016) 2076-2083. [16] Meneghetti, G., Lazzarin, P., Significance of the Elastic Peak Stress evaluated by FE analyses at the point of singularity of sharp V-notched components, Fatigue Fract. Eng. Mater. Struct, 30 (2007) 95-106. DOI: 10.1111/j.1460-2695.2006.01084.x [17] Dowling, N.E., Mechanical behavior of materials, Pearson Prentice Hall (2007). [18] Tanaka, K., Takahash, H., Akiniwa, Y., Fatigue crack propagation from a hole in tubular specimens under axial and torsional loading, Int J Fatigue 28 (2006) 324-334. DOI: 10.1016/j.ijfatigue.2005.08.001 NOMENCLATURE a: notch depth plus notch-emanated crack length [mm] A%: percent deformation after fracture f acq : sample rate of the infrared camera [Hz] f L : load test frequency [Hz] h: specific heat flux [W/m 2 ] HB: Brinell hardness K,  K: stress intensity factor, its range [MPa  m] q: specific energy flux per cycle [J/(m 2 · cycle)] Q, Q*: specific heat energy per cycle, its average value inside V c [J/(m 3 · cycle)] r n : notch radius [mm] R: nominal stress ratio (ratio between the minimum and the maximum applied nominal stress) R c : radius of structural volume V c [m] R p,02 : engineering proof stress [MPa] R m : engineering tensile strength [MPa] S cd : external surface of control volume through which heat Q is transferred by conduction [m 2 ] T a : amplitude of temperature oscillations [K] T m : material temperature averaged over time [K] V c : structural volume [m 3 ] z: specimen thickness [m]  notch opening angle [rad]  : material thermal conductivity [W/(m  K)]  A-1 : plain material fatigue limit for R=-1 [MPa] (obtained from a stair-case sequence at 10 7 cycles)  ' ,02 p : cyclic engineering proof stress [MPa]

RkJQdWJsaXNoZXIy MjM0NDE=