Issue 41

G. Meneghetti et alii, Frattura ed Integrità Strutturale, 41 (2017) 8-15; DOI: 10.3221/IGF-ESIS.41.02 15 [5] Okano T, Hisamatsu N. Effect of notch of torsional fatigue property of pure titanium. Proc 31 Symp Fatigue, Soc Mater Sci Japan 2012;31:129–133. [6] Tanaka K. Crack initiation and propagation in torsional fatigue of circumferentially notched steel bars. Int J Fatigue 2014;58:114–25. doi:10.1016/j.ijfatigue.2013.01.002. [7] Atzori B, Berto F, Lazzarin P, Quaresimin M. Multi-axial fatigue behaviour of a severely notched carbon steel. Int J Fatigue 2006;28:485–93. doi:10.1016/j.ijfatigue.2005.05.010. [8] Tanaka K, Ishikawa T, Narita J, Egami N. Fatigue life of circumferentially notched bars of carbon steel under cyclic torsion with and without static tension. J Soc Mater Sci Jpn 2011;60. [9] Ritchie RO, McClintock FA, Nayeb-Hashemi H, Ritter MA. Mode III fatigue crack propagation in low alloy steel. Metall Trans A 1982;13:101–10. doi:10.1007/BF02642420. [10] Tschegg EK. A contribution to mode III fatigue crack propagation. Mater Sci Eng 1982;54:127–36. doi:10.1016/0025- 5416(82)90037-4. [11] Tschegg EK. The influence of the static I load mode and R ratio on mode III fatigue crack growth behaviour in mild steel. Mater Sci Eng 1983;59:127–37. doi:10.1016/0025-5416(83)90094-0. [12] Tanaka K, Akiniwa Y, Nakamura H. J-integral approach to mode III fatigue crack propagation in steel under torsional loading. Fatigue Fract Eng Mater Struct 1996;19:571–9. doi:10.1111/j.1460-2695.1996.tb00993.x. [13] Yu H, Tanaka K, Akiniwa Y. Estimation of torsional fatigue strength of medium carbon steel bars with a circumferential crack by the cyclic resistance-curve method. Fatigue Fract Eng Mater Struct 1998;21:1067–76. doi:10.1046/j.1460-2695.1998.00105.x. [14] Lazzarin P, Zambardi R. A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches. Int J Fract 2001;112:275–98. doi:10.1023/A:1013595930617. [15] Lazzarin P, Berto F. Some expressions for the strain energy in a finite volume surrounding the root of blunt V- notches. Int J Fract 2005;135:161–85. doi:10.1007/s10704-005-3943-6. [16] Campagnolo A, Meneghetti G, Berto F, Tanaka K. Crack initiation life in notched steel bars under torsional fatigue: Synthesis based on the averaged strain energy density approach. Int J Fatigue 2016:(in press). doi:10.1016/j.ijfatigue.2016.12.022. [17] Ritchie RO, Bathe KJ. On the calibration of the electrical potential technique for monitoring crack growth using finite element methods. Int J Fract 1979;15:47–55. doi:10.1007/BF00115908. [18] Aronson G, Ritchie R. Optimization of the Electrical Potential Technique for Crack Growth Monitoring in Compact Test Pieces Using Finite Element Analysis. J Test Eval 1979;7:208. doi:10.1520/JTE11382J. [19] Campagnolo A, Meneghetti G, Berto B, Tanaka K. Averaged strain energy density-based synthesis of crack initiation life of notched titanium and steel bars under uniaxial and multiaxial fatigue. Fatigue 2017, Cambridge, UK: 2017. [20] Doremus L, Nadot Y, Henaff G, Mary C, Pierret S. Calibration of the potential drop method for monitoring small crack growth from surface anomalies – Crack front marking technique and finite element simulations. Int J Fatigue 2015;70:178–85. doi:10.1016/j.ijfatigue.2014.09.003. [21] Berto F, Lazzarin P. Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches. Mater Sci Eng R Reports 2014;75:1–48. doi:10.1016/j.mser.2013.11.001. [22] Livieri P, Lazzarin P. Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values. Int J Fract 2005;133:247–76. doi:10.1007/s10704-005-4043-3. [23] Berto F, Campagnolo A, Chebat F, Cincera M, Santini M. Fatigue strength of steel rollers with failure occurring at the weld root based on the local strain energy values: modelling and fatigue assessment. Int J Fatigue 2016;82:643–57. doi:10.1016/j.ijfatigue.2015.09.023. [24] Berto F, Campagnolo A, Lazzarin P. Fatigue strength of severely notched specimens made of Ti-6Al-4V under multiaxial loading. Fatigue Fract Eng Mater Struct 2015;38:503–17. [25] Berto F, Lazzarin P. Fatigue strength of structural components under multi-axial loading in terms of local energy density averaged on a control volume. Int J Fatigue 2011;33:1055–65. doi:10.1016/j.ijfatigue.2010.11.019. [26] Berto F, Lazzarin P, Tovo R. Multiaxial fatigue strength of severely notched cast iron specimens. Int J Fatigue 2014;67:15–27. doi:10.1016/j.ijfatigue.2014.01.013. [27] Lazzarin P, Sonsino CM, Zambardi R. A notch stress intensity approach to assess the multiaxial fatigue strength of welded tube-to-flange joints subjected to combined loadings. Fatigue Fract Eng Mater Struct 2004;27:127–40. doi:10.1111/j.1460-2695.2004.00733.x. [28] Lazzarin P, Berto F, Zappalorto M. Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: Theoretical bases and applications. Int J Fatigue 2010;32:1559–67. doi:10.1016/j.ijfatigue.2010.02.017.

RkJQdWJsaXNoZXIy MjM0NDE=