Issue 41

L. Patriarca et alii, Frattura ed Integrità Strutturale, 41 (2017) 277-284; DOI: 10.3221/IGF-ESIS.41.37 284 R EFERENCES [1] Rice, J.R., Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity, JMPS, 19 (1971) 433-455. [2] Flouriot, S., Forest, S., Cailletaud, G., Köster, A., Rémy, L., Burgardt, B., Gros, V., Mosset, S., Delautre, J., Strain localization at the crack tip in single crystal ct specimens under monotonous loading: 3d finite element analyses and application to nickel-base superalloys, Int. J. Frac., 124 (2003) 43-77. [3] Potirniche, G.P., Daniewicz, S.R., Analysis of crack tip plasticity for microstructurally small cracks using crystal plasticity theory, Eng. Fract. Mech., 70 (2003) 1623-1643. [4] Bouvard, J.L., Chaboche, J.L., Feyel, F., Gallerneau, F., A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal superalloys, Int. J. Fatigue, 31 (2009) 868-879. [5] Rabbolini, S., Luccarelli, P.G., Beretta, S., Foletti, S., Sehitoglu, H., Near-tip closure and cyclic plasticity in Ni-based single crystals, Int. J. Fatigue, 89 (2016) 53-65. [6] Gall, K., Sehitoglu, H., Kadioglu, Y., Fem study of fatigue crack closure under double slip, Ac. Mat., 44 (1996) 3955- 3965. [7] Potirniche, GP and Daniewicz, SR and Newman, JC, Simulating small crack growth behavior using crystal plasticity theory and finite element analysis, Fatigue Fract. Eng. Mater. Struct., 27 (2004) 59-71. [8] Lin, B., Zhao, L.G., Tong, J., A crystal plasticity study of cyclic constitutive behavior, crack-tip deformation and crack-growth path for a polycrystalline nickel-based superalloy, Eng. Fract. Mech., 78 (2011) 2174-2192. [9] Furrer, D., Fecht, H., Ni-based superalloys for turbine discs, JOM, 51 (1999) 14–17. [10] Healy, B., Gullerud, A., Koppenhoefer, K., Roy, A., Roy-Chowdhury, S., Petti, J., Walters, M., Bichon, B., Cochran, K., Carlyle, A., Messner, M.C., Dodds, R.J., WARP3D: 3-D dynamic nonlinear fracture analyses of solids using parallel computers, Structural Research Series (SRS 607) UILU-ENG-95-2012, University of Illinois at Urbana- Champaign, (2015). [11] Rice, J.R., Hawk, D.E., Asaro, R.J., Crack tip fields in ductile crystals, Int. J. Fract., 42 (1998) 301-321. [12] Lee, E.H., Elastic-plastic deformation at finite strains, J. App. Me., 36 (1969) 1-6. [13] Messner, M.C., Beaudoin, A.J., Dodds, R.J., Consistent crystal plasticity kinematics and linearization for the implicit finite element method, Eng. Co., 32 (2015) 1526-1548. [14] Follansbee, P.S., Kocks, U.F., A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable, Ac. Met., 36 (1988) 81-93. [15] Kocks, U.F., Thermodynamics and kinetics of slip, Prog. Mater. Sci., 19 (1975). [16] Zeghadi, A., Forest, S., Gourgues, A.-F., Bouaziz, O., Ensemble averaging stress-strain fields in polycrystalline aggregates with a constrained surface microstructure – Part 2: crystal plasticity, Philos. Mag., 87 (2007) 1425-1446.

RkJQdWJsaXNoZXIy MjM0NDE=