Issue 41

T. Vojtek et alii, Frattura ed Integrità Strutturale, 41 (2017) 245-251; DOI: 10.3221/IGF-ESIS.41.33 250 R EFERENCES [1] Pokluda, J., Šandera, P., Micromechanisms of Fracture and Fatigue. In a multiscale context, London, UK: Springer; (2010). [2] Gross, T.S., Mendelsohn, D., Mode I stress intensity factors induced by fracture surface roughness under pure mode III loading: application to the effect of loading modes on stress corrosion crack growth, Metal. Transactions, 20A (1989) 1989–1999. DOI: 10.1007/BF02650285. [3] Pokluda, J., Pippan, R., Vojtek, T., Hohenwarter, A., Near-threshold Behaviour of Shear-mode Fatigue Cracks in Metallic Materials, Fatigue Fract. Eng. Mater. Struct., 37 (2014) 232–254. DOI: 10.1111/ffe.12131. [4] Pinna, C., Doquet, V., The preferred fatigue crack propagation mode in a M250 maraging steel loaded in shear, Fatigue Fract. Eng. Mater. Struct., 22 (1999) 173–183. DOI: 10.1046/j.1460-2695.1999.00161.x. [5] Doquet, V., Pommier, S., Fatigue crack growth under non-proportional mixed-mode loading in ferritic-pearlitic steel, Fatigue Fract. Eng. Mater. Struct., 27 (2004) 1051–1060. DOI: 10.1111/j.1460-2695.2004.00817.x. [6] Doquet, V., Bertolino, G., Local approach to fatigue cracks bifurcation, Int. J. Fract., 30 (2008) 942–950. DOI: j.ijfatigue.2007.06.001. [7] Doquet, V., Abadi, M., Bui, Q.H., Pons, A., Influence of the loading path on fatigue crack growth under mixed-mode loading, Int. J. Fract., 159 (2009) 219–232. DOI: 10.1007/s10704-009-9396-6. [8] Murakami, Y., Metal fatigue: effects of small defects and nonmetallic inclusions, Amsterdam – Tokyo, Elsevier, (2002). [9] Gates, N., Fatemi, A., Friction and roughness induced closure effects on shear-mode crack growth and branching mechanisms, Int. J. Fatigue, 92 (2016) 442–458. DOI: 10.1016/j.ijfatigue.2016.01.023. [10] Vojtek, T., Pippan, R., Hohenwarter, A., Holáň, L., Pokluda, J., Near-threshold propagation of mode II and mode III fatigue cracks in ferrite and austenite, Acta Mater., 61 (2013) 4625-4635. DOI: 10.1016/j.actamat.2013.04.033. [11] Vojtek, T., Pokluda, J., Hohenwarter, A., Pippan, R., Three-dimensional morphology of fracture surfaces generated by modes II and III fatigue loading in ferrite and austenite, Eng. Fract. Mech., 108 (2013), 285–293. DOI: 10.1016/j.engfracmech.2013.02.022. [12] Vojtek, T., Pokluda, J., Hohenwarter, A., Pippan, R., Progress in Understanding of Intrinsic Resistance to Shear-mode Fatigue Crack Growth in Metallic Materials, Int. J. Fatigue, 89 (2016) 36–42. DOI: 10.1016/j.ijfatigue.2016.01.009. [13] Vojtek, T., Hohenwarter, A., Pippan, R., Pokluda, J, Experimental evidence of a common local mode II growth mechanism of fatigue cracks loaded in modes II, III and II + III in niobium and titanium, Int. J. Fatigue, 92 (2016) 470–477. DOI: 10.1016/j.ijfatigue.2016.02.042. [14] Vojtek, T., Pippan, R., Hohenwarter, A., Pokluda, J., Prediction of effective mode II fatigue crack growth threshold for metallic materials, Eng. Fract. Mech., 174 (2017), 117–126. DOI: 10.1016/j.engfracmech.2016.11.024. [15] Vojtek, T., Pokluda, J., Experimental Investigation of Modes II and III Fatigue Crack Growth in Unalloyed Titanium, Key Engineering Materials, 592-593 (2014) 797–800. DOI: 10.4028 /www.scientific.net/KEM.592-593.797. [16] Sih, G.C., Some basic problems in fracture mechanics and new concepts, Eng. Fract. Mech., 5 (1973) 365–377. [17] Magill, M.A., An analysis of sustained mixed mode fatigue crack growth, Eng. Fract. Mech., 56 (1997) 9–24. DOI: 10.1016/S0013-7944(96)00106-3. [18] Richard, H.A., Schramm, B., Schirmeisen, N.-H., Cracks on Mixed Mode loading – Theories, experiments, simulations, Int. J. Fatigue, 62 (2014) 93–103. DOI:10.1016/j.ijfatigue.2013.06.019. [19] Pokluda, J., Pippan, R., Can a pure mode III fatigue loading contribute to crack propagation in metallic materials?, Fatigue Fract. Eng. Mater. Struct., 28 (2005) 179–185. DOI: 10.1111/j.1460-2695.2004.00843.x. [20] Doquet, V., Bui, Q.H., Bertolino, G., Merhy, E., Alves, L., 3D shear-mode fatigue crack growth in maraging steel and Ti-6Al-4V, Int. J. Fract, 165 (2010) 61–76. DOI: 10.1007/s10704-010-9504-7. [21] Martins, R.F., Ferreira, L., Reis, L., Chambel, P., Fatigue crack growth under cyclic torsional loading, Theor. Appl. Fract. Mech., 85A (2016) 56–66. DOI: 10.1016/j.tafmec.2016.08.016. [22] Suresh, S., Crack initiation in cyclic compression and its applications, Eng. Fract. Mech., 21 (1985) 453–463. DOI: 10.1016/S0013-7944(85)80038-2. [23] Pippan, R., The growth of short cracks under cyclic compression, Fatigue Fract. Eng. Mater. Struct., 9 (1987) 319– 328. DOI: 10.1111/j.1460-2695.1987.tb00459.x. [24] Newman, J.C., Yamada, Y., Compression precracking methods to generate near-threshold fatigue-crack-growth-rate data, Int. J. Fatigue, 32 (2010) 879–885. DOI: 10.1016/j.ijfatigue.2009.02.030.

RkJQdWJsaXNoZXIy MjM0NDE=