Issue 41
F.V. Antunes et alii, Frattura ed Integrità Strutturale, 41 (2017) 149-156; DOI: 10.3221/IGF-ESIS.41.21 156 [2] Kawabata, T., Tagawa, T., Sakimoto, T., Kayamori, Y., Ohata, M., Yamashita, Y., Tamura, E., Yoshinari, H., Aihara, S., Minami, F., Mimura, H., Hagihara, Y. Proposal for a new CTOD calculation formula, Engineering Fracture Mechanics, 159 (2016) 16–34. [3] Laird, C., Smith, G.C. Crack propagation in high stress fatigue, Philos. Mag., 8 (1962) 847–857. [4] Pelloux, R.M. Crack Extension by alternating shear, Engineering Fracture Mechanics, 1 (1970) 170-174. [5] Wu, J., Ellyin, F. A study of fatigue crack closure by elastic–plastic finite element for constant-amplitude loading. International Journal of Fracture, 82 (1996) 43–65. [6] Antunes F.V., Branco R., Prates, P.A., Borrego, L., Fatigue crack growth modelling based on CTOD for the 7050-T6 alloy, Fatigue and Fracture of Engng Materials Structures, in press, DOI: 10.1111/ffe.12582 [7] Matos, P.F.P., Nowell, D., On the accurate assessment of crack opening and closing stresses in plasticity-induced fatigue crack closure problems, Eng. Fract. Mech., 74 (2007) 1579-1601. [8] Borrego, L.P., Ferreira, J.M., Pinho da Cruz, A. J.D.M. Costa, Evaluation of overload effects on fatigue crack growth and closure, Eng. Fract. Mech., 70 (2003) 1379–1397.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=