Issue 41

S. E. Ferreira et alii, Frattura ed Integrità Strutturale, 41 (2017) 129-138; DOI: 10.3221/IGF-ESIS.41.18 138 [5] Dill, H.D., Saff, C.R., Spectrum crack growth prediction method based on crack surface displacement and contact analyses. Fatigue Crack Growth under Spectrum Loads, ASTM STP 595 (1976) 306-319. [6] Newman, Jr, JC., A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading. Methods and Models for Predicting Fatigue Crack Growth under Random Loading, ASTM STP 748 (1981) 53-84. [7] de Koning, A.U., Liefting, G.. Analysis of crack opening behavior by application of a discretized strip yield model. Mechanics of Fatigue Crack Closure, ASTM STP 982 (1988) 437-458. [8] Wang, G.S., Blom, A.F., A strip model for fatigue crack growth predictions under general load conditions. Eng Fract Mech, 40 (1991) 507-533. [9] Beretta,S, Carboni,M. A strip-yield algorithm for the analysis of closure evaluation near the crack tip. Eng Fract Mech 72 (2005) 1222-1237. [10] Kemp, P.M.J., Fatigue crack closure – a review. TR90046, Royal Aerospace Establishment, UK, (1990). [11] Skorupa, M., Load interaction effects during fatigue crack growth under variable amplitude loading - a literature review - part I: empirical trends, Fatigue Fract Eng Mater Struct, 21 (1998) 987-1006. [12] Skorupa, M., Load interaction effects during fatigue crack Growth under variable amplitude loading - a literature review - part II: qualitative interpretation, Fatigue Fract Eng Mater Struct, 22 (1999) 905-926. [13] Castro, J.T.P., Meggiolaro, M.A., Miranda, A.C.O., Singular and non-singular approaches for predicting fatigue crack growth behavior. Int J Fatigue, 27 (2005) 1366-1388. [14] Castro, J.T.P., Meggiolaro, M.A., González, J.A.O., Can  K eff be assumed as the driving force for fatigue crack growth? Frattura ed Integrità Strutturale, 33 (2015) 97-104. [15] Castro, J.T.P., González, J.A.O., Meggiolaro, M.A., González, G.L.G., Freire, J.L.F., Some questions about assuming  K eff as the sole FCG driving force. Submitted to Int J Fatigue, (2016). [16] Chen, D.L., Weiss, B., Stickler, R., The effective fatigue threshold: significance of the loading cycle below the crack opening load. Int J Fatigue, 16 (1994) 485-491. [17] Vasudevan, A. K., Sadananda, K., Holtz, R. L., Analysis of vacuum fatigue crack growth results and its implications, International J. Fatigue, 27 (2005) 1519-1529. [18] Castro, J.T.P., Kenedi, P.P., Prediction of fatigue crack growth rates departing from Coffin-Manson concepts. J Braz Soc Mech Sci Eng, 17 (1995) 292-303 (in Portuguese). [19] Durán, J.A.R., Castro, J.T.P., Payão Filho, J.C., Fatigue crack propagation prediction by cyclic plasticity damage accumulation models, Fatigue Fract Eng Mater Struct, 26 (2003) 137-150. [20] Castro, J.T.P., Meggiolaro, M.A., Miranda, A.C.O., Fatigue crack growth predictions based on damage accumulation calculations ahead of the crack tip, Comput Mat Sci, 46 (2009) 115-123. [21] Rice, J.R., Rosengren, G.F., Plane strain deformation near a crack tip in a power-law hardening material, J Mech Phys Solids, 16 (1968) 1-12. [22] Hutchinson, J.W., Singular behavior at the end of a tensile crack tip in a hardening material, J Mech Phys Solids 16 (1968) 13-31. [23] Creager, M., Paris, P.C., Elastic field equations for blunt cracks with reference to stress corrosion cracking, Int J Fract Mech, 3 (1967) 247-252. [24] Schwalbe, K.H., Comparison of several fatigue crack propagation laws with experimental results, Eng Fract Mech 6 (1974) 325-341. [25] Dugdale, D. S., Yielding of sheets containing slits, J Mech Phys Solids, 8 (1960) 100-104. [26] Barenblatt, G.I., The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 7 (1962) 55-192. [27] NASGRO – Fracture Mechanics and Fatigue Crack Growth Analysis Software, Reference Manual, version 4.02, (2002). [28] Newman, J.C., FASTRAN II: a fatigue crack growth structural analysis program, NASA Technical Memorandum 104159, LRC Hampton, (1992). [29] Newman, J.C., A Crack Opening Stress Equation for Fatigue Crack Growth. Int J Fract, 24 (1984) R131-R135. [30] Rice, J.R., Mechanics of crack tip deformation and extension by fatigue. Fatigue Crack Propagation, ASTM STP 415 (1967) 247-311.

RkJQdWJsaXNoZXIy MjM0NDE=