Issue 36

L. C. H. Ricardo et alii, Frattura ed Integrità Strutturale, 36 (2016) 201-215; DOI: 10.3221/IGF-ESIS.36.20 213 [3] Stouffer, D. C., Williams, J. F., A method for fatigue crack growth with a variable stress intensity factor, Eng. Fracture Mechanics, 11 (1979) 525-536. DOI: 10.1016/0013-7944(79)90076-6. [4] Ditlevsen, O., Sobczyk, K., Random fatigue crack growth with retardation, Eng. Fracture Mech., 24(6) (1986) 861- 878. DOI:10.1016/0013-7944(86)90271-7 [5] Wei, R. P., Shih, T. T., Delay in fatigue crack growth, Int. Journal Fracture, 10 (1974) 77-85. DOI: 10.1007/bf00955082 [6] Paris, P. C., Erdogan, F., Journal of Basic Engineering, 85 (1963) 528. [7] Head, A. K., The Philosophical Magazine, 44(7) (1953) 253. [8] Dowling, N.E, Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue, Third Edition, Pearson Education, Inc., USA, (2007). [9] Hairman, G. A., Provan, J. W., Fatigue crack tip plasticity revisited, The Issue of Shape Addressed, Theoretical and Appl. Frac. Mech. Journal, 26 (1997) 63-79. DOI: 10.1016/s0167-8442(96)00036-5. [10] Perez, N., Fracture mechanics, Kluwer Academic Publishers, New York, USA, (2004). [11] Broek, D., Elementary engineering fracture mechanics; Kluwer Academic Publishers Group, Boston, (1982). [12] Dugdale, D. S., Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8(2) (1960) 100-104. DOI:10.1016/0022-5096(60)90013-2. [13] Murthy, A. R. C.; Palani, G. S., Iyer, N. R., State of art review on fatigue crack growth analysis under variable amplitude loading IEI Journal, (2004) 118-129. [14] Wheeler, O. E., Spectrum loading and crack growth, Transactions of the ASME Series D’, Journal of Basic Engineering, 94 (1972) 181-186. [15] Willenborg, J. D.; Engle, R. M., Wood, H. A., A crack growth retardation model using an effective stress concept, AFFDL, TM-71-FBR, Air Force Flight Dynamics Laboratory, Wright Patterson Air force Base, OH, (1971). [16] Porter, T. R., Method of analysis and prediction of variable amplitude fatigue crack growth, Eng. Fracture Mechanics, 4(4) (1972) 717-736. DOI:10.1016/0013-7944(72)90011-2. [17] Gray, T. D., Gallagher, J. P., Predicting fatigue crack retardation following a single overload using a modified Wheeler model, ASTM STP 590, (1976). DOI: 10.1520/STP590-EB. [18] Gallagher, J. P., Hughes, T. F., Influence of the yield strength on overload fatigue crack growth behavior of 4340 Steel, AFFDL – TR-74-27, Air Force Flight Dynamics Laboratory, Wright Patterson Air force Base, OH, (1974). [19] Johnson, W. S., Multi-parameter yield zone model for predicting spectrum crack growth, ASTM STP 748, (1981) 85- 102. DOI: 10.1520/E0748-02R08. [20] Chang, J. B., Hiyama, R. M., Szamossi, M., Improved methods for predicting spectrum loadings effects, AFWAL-TR- 81-3092, Air Force Flight Dynamics Laboratory, Wright Patterson Air force Base, OH, (1984). [21] Elber, W., The significance of fatigue crack closure, ASTM STP 486, (1971) 230- 242. DOI: 10.1520/STP486-EB. [22] Bell, P. D., Creager, M., Crack growth analyses for arbitrary spectrum loading, AFFDL-TR-74-129, Air Force Flight Dynamics Laboratory, Wright Patterson Air force Base, OH, (1974). [23] Newman, J. C., A finite element analysis fatigue crack closure, NASA TM X 72005, NASA, Hampton, VA, (1975). [24] Dill, H. D., Saff, C. R., Spectrum crack growth prediction method based on crack surface displacement and contact analyses, Fatigue crack growth under spectrum loads, ASTM STP, 595 (1976) 306–319. DOI: 10.1520/STP595-EB. [25] Kanninnen, M. F., Atkinson, C., Feddersen, C. E., A fatigue crack growth analysis method based on a single representation of crack tip plasticity, ASTM STP, 637 (1977) 122-140. DOI: 10.1520/STP637-EB. [26] Budianski, B., Hucthinson, J. W., Analysis of closure in fatigue crack growth, Journal of Applied Mechanics, 45 (1978) 267-276. DOI 10.1115/1.34.24286. [27] de Koning, A. U., A simple crack closure model for predictions of fatigue crack growth rates under variable amplitude loading, ASTM STP, 743 (1981) 63-85. [28] Corbly, D. M., Packman, P. F., On the influence of single and multiple peak overloads on fatigue crack propagation in 7075-T6511 aluminum, Eng. Fracture Mech., 5 (1973) 479-497. DOI:10.1016/0013-7944(73)90034-9. [29] Schijve, J.; Brock, D., de Rigle, P., NLR, Report M2094, Amsterdam, (1962). [30] Hardrarth, H. F., McEvily, A . T., Proc. crack propagation symposium, Cranfield, 1 (1961). [31] Jonds, D., Wei, R. P., An exploratory study of delay effects in fatigue crack growth, Int. J. Fracture Mechanics, (1971) 7. [32] von Ewu, E., Hertzberg, R., Roberts, R., Delay Defects in Fatigue Crack Propagation, Nat. Symposium F.M., (1971) 7. [33] Hudson, C. M., Effect of stress ratio on fatigue-crack growth in 7075-T6 and 2024-T3 alumina-alloy specimens, NASA, TNL-5390, (1969).

RkJQdWJsaXNoZXIy MjM0NDE=