Issue 35

M.V. Bannikov et alii, Frattura ed Integrità Strutturale, 35 (2016) 50-56; DOI: 10.3221/IGF-ESIS.35.06 56 R EFERENCES [1] Luong, M. P., Infrared thermographics scanning of fatigue in metals, Nuclear Engineering and Design., 158 (1995) 363-376. [2] Bathias, C., Piezoelectric fatigue testing machines and devices, International Journal of Fatigue, 28 (2006) 1438-445. [3] Barenblatt, G.I., Scaling Phenomena in Fatigue and Fracture, International Journal of Fracture, 138(1) (2004) 19-35. [4] Bouchaud, E., Scaling properties of cracks, J. Phys.: Condens. Matter., 9 (1997) 4319–4344. [5] Oborin, V.A., Bannikov, M.V., Naimark, O.B., Palin-Luc, T., Scale invariance of fatigue crack grow in gigacycle loading, Technical Physics Letters., 36(22) (2010) 76-82. [6] Bathias, C., Paris, P.C., Gigacycle Fatigue in Mechanical Practice, Marcel Dekker Publisher Co, (2005). [7] Sakai, T., Review and Prospects for Current Studies on High Cycle Fatigue of Metallic Materials for Machine Structural Use, Jour. Solid Mech. and Mat. Eng., 3(3) (2009) 425-439. [8] Cherepanov, G.P., Mechanics of brittle fracture / Moscow, «Nauka», (1974) 640, in Russian. [9] Ritchie, R.O., Incomplete self-similarity and fatigue-crack growth, International Journal of Fracture, 132(3) (2005) 197-203. [10] Oborin, V., Bannikov, M., Naimark, O., Froustey, C., Long Range Correlation Large Scale Interactions in Ensembles of Defects: Estimating Reliability of Aluminum Alloys under Dynamic Cycling and Fatigue Loading Conditions, Technical Physics Letters, 37(3) (2011) 241–243.

RkJQdWJsaXNoZXIy MjM0NDE=