Issue 35

X.C. Arnoult et alii, Frattura ed Integrità Strutturale, 35 (2016) 509-522; DOI: 10.3221/IGF-ESIS.35.57 521 [3] Hara, T., Shinohara, Y., Asahi, H., Terada, Y., Effects of Microstructure and Texture on DWTT Properties for High Strength Line Pipe Steels, in: ASME. Proceeding of the International Pipeline Conference, Calgary, Alberta, Canada, (2006) 245-250. [4] Yang, Z., Guo, W.L., Huo, C.Y., Wang, Y., Fracture Appearance Evaluation of High Performance Pipeline Steel DWTT Specimen with Delamination Cracks, Key Eng. Mater., 324-325 (2006) 59-62. [5] Hara, T., Shinohara, Y., Terada, Y., Asahi, H., DWTT properties for high strength line pipe steels. Proceeding of the 18th International Offshore and Polar Engineering Conference, Vancouver, Canada, (2008) 189-193. [6] Yan, W., Sha, L., Zhu, W., Wang, Y., Shan, Y., Yang., K., Delamination Fracture Related to Tempering in a High- Strength Low-Alloy Steel. Metall, Mater. Trans. A., 41 (2009) 159-171. [7] Yan, W., Sha, L., Zhu, W., Wang, Y., Shan, Y., Yang.,K., Change of tensile behavior of a high-strength low-alloy steel with tempering temperature, Mater. Sci. Eng. A., 517 (2009) 369-374. [8] Hara, T., T. Fujishiro, Effect of Separation on Ductile Crack Propagation Behavior During Drop Weight Tear Test. Proceeding of the 18h International Offshore and Polar Engineering Conference, Vancouver, Canada, (2008) 321-327. [9] Joo, M.S., Suh, D.W., Bae, J.H., Bhadeshia, H.K.D.H., Role of delamination and crystallography on anisotropy of Charpy toughness in API-X80 steel, Mater. Sci. Eng. A., 546 (2012) 314-322. [10] Tankoua, F., Crepin, J., Thibaux, P., Arafin, M., Cooreman, S., Gourgues, A.F., Delamination of pipeline steels: determination of an anisotropic cleavage criterion, Mech. Ind., 15 (2014) 45-50. [11] Rao, K.T.V., Ritchie, R.O., Fracture-Toughness Behavior of 2090-T83 Aluminum Lithium Alloy Sheet at Ambient and Cryogenic Temperatures, Scr. Mater., 23 (1989) 1129-1134. [12] Rao, K.T.V., Ritchie, R.O., Mechanical properties of Al–Li alloys Part 1 Fracture toughness and microstructure, Mater. Sci. Technol., 5 (1989) 882-895. [13] Rao, K.T.V., Yu, W., Ritchie, R.O., Cryogenic toughness of commercial aluminum-lithium alloys: Role of delamination toughening, Metall. Mater. Trans. A., 20 (1989) 485-497. [14] Rao, K.T.V., Ritchie, R.O., Mechanisms influencing the cryogenic fracture-toughness behavior of aluminum-lithium alloys, Acta. Metall. Mater., 38 (1990) 2309-2326. [15] Kalyanam, S., Beaudoin, A.J., Dodds, R.H., Barlat, F., Delamination cracking in advanced aluminum–lithium alloys – Experimental and computational studies, Eng. Fract. Mech., 76 (2009) 2174-2191. [16] Hojná, A., Falcnik, M., Hietanen, O., Hulinová, L., Korhonen, R., Oszvald, F., Behaviour of 08Ch18N10T steel after 15 years of operation as core shroud of WWER 440 plant, Proceeding of the 11th International Conference Material Issues in Design, Manufacturing and Operation of Nuclear Power Plants Equipement, St-Perterburgs, Federation of Russia, (2010). [17] Hojná, A., Ernestová, M., Hietanen, O., Hulinová, L., Korhonen, R., Oszvald, F., Irradiation assisted stress corrosion cracking of austenititc stainless steel WWER reactor core internals. Proceeding of the 15th International conference on environmental degradation of materials in nuclear power systems-water reactors, Cheyenne Montain Resort, Colorado Springs, Colorado, USA, (2011). [18] Song, R., Ponge, D., Raabe, D., Mechanical properties of an ultrafine grained C–Mn steel processed by warm deformation and annealing, Acta Mater., 53 (2005) 4881-4892. [19] Embury, J.D., Petch, N. J., Wraith, A. E., Wright, E. S., Fracture of Mild Steel Laminates, Trans. Metall. Soc. AIME, 239 (1967) 114-118. [20] Vaillant, F., Tribouilloy-Buissé, L., Couvant., T., Stress corrosion cracking propagation of colf-worked austenitic strainless steels in PWR environment. Proceeding of the 14th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems, Virginia Beach, VA, USA, (2009). [21] Michler, T., Naumann, J., Hydrogen environment embrittlement of austenitic stainless steels at low temperatures, Int. J. Hydrog. Energy., 33 (2008) 2111-2122. [22] Bramfitt, B.L., A.R. Marder, Study of delamination behavior of a very low-carbon steel, Metall. Mater. Trans. A., 8 (1977) 1263-1273. [23] Baldi, G., Buzzichelli, G., Critical stress for delamination fracture in HSLA steels, Metal Science, 12 (1978) 459-472. [24] Shanmugam, P. and S.D. Pathak, Some studies on the impact behavior of banded microalloyed steel, Eng. Fract. Mech., 53 (1996) 991-1005. [25] Srba, O., Michalicka, J., Keilova, E., Kocik, J., TEM Study of Radiation Induced Defects in Baffle-Former-Barrel Assembly From Decommissioned NPP Greifswald, IEEE Trans Nucl Sci, PP 99 (2014) 1-6. [26] Wanlin, G., Elasto-plastic three-dimensional crack border field—III. Fracture parameters, Eng. Fract. Mech., 51 (1995) 51-71.

RkJQdWJsaXNoZXIy MjM0NDE=