Issue 35

L. C. H. Ricardo et alii, Frattura ed Integrità Strutturale, 35 (2016) 456-471; DOI: 10.3221/IGF-ESIS.35.52 471 [94] Alessandra A., Straub, D., Reliability assessment of high cycle fatigue under variable amplitude loading: Review and solutions, Eng. Fracture Mechanics, 121–122 (2014) 40–66. DOI:10.1016/j.engfracmech.2014.02.023. [95] Ten Have, A. A., European approaches in standard spectrum development, In: Potter J. M., Watanable R. T., editors, Development of Fatigue Loading Spectra, ASTM-STP 1006, ASTM, (1989) 35-75. DOI: 10.1520/STP1006-EB. [96] Zheng, X., On some basic problems of fatigue research in engineering, International Journal of Fatigue, 23 (2001) 751-766. DOI:10.1016/S0142-1123(01)00040-8. [97] Frost, N. E., Marsh, K. J., Pook, L. In: Metal fatigue, Oxford: Clarendon Press, (1974) 20-22. [98] Heuler, P., Seeger, T., A criterion for omission of variable amplitude loading histories, International Journal of Fatigue, 8(4) (1986) 225-230. DOI:10.1016/0142-1123(86)90025-3. [99] ECCS Recommendations for fatigue design of steel structures, Institute of Metal Construction (IOCM) of Swiss Federal Institute of Technology, Lausanne, Switzerland, ECCS, (1985). [100] Shi, Y. J., Yan, Y. M., Li, Z. R. Shi, Z. J., Hou, W. W., Assessment of remaining life of steel beams of Chang- Tai-Guam bridge on the line from Beijing to Guangzhou, Technical Report, Beijing, Institute of Railway Engineering, Chinese Academy of Railway Science, (1990). [101] Schijve, J., Observations on the prediction of fatigue crack growth propagation under variable amplitude loading, ASTM STP 595, (1976) 3-23. DOI: 10.1520/STP595-EB. [102] Barsom, J. M., Fatigue crack growth under variable amplitude loading in various bridge steels, ASTM STP 595, (1976) 217-235. DOI: 10.1520/STP595-EB. [103] Hudson, C. M., A root mean square approach for predicting fatigue crack growth under random loading, ASTM STP 748, (1981) 41-52. DOI: 10.1520/STP748-EB. [104] Johnson, W. S., Multi-parameter yield zone model for predicting spectrum crack growth, ASTM STP 748, (1981) 85-102. DOI: 10.1520/STP748-EB. [105] Rudd, J. L., Engle Jr, R. M., Crack growth behavior of center cracked panels under random spectrum loading, ASTM STP 748, (1981) 1033-1114. DOI: 10.1520/STP748-EB. [106] Youb, Y., Song, J. H., Fatigue crack closure and growth behavior under random loading, Eng. Fracture Mechanics, 49(1) (1994) 105-120. DOI:10.1016/0013-7944(94)90115-5. [107] Kikukawa, M., Jono, M., Kondo, Y., Mikami, S., Fatigue crack closure and estimation method of crack propagation rate under stationary varying loading conditions including random loading (1st report, Effects of mean load and study on wave counting method), Trans. Jpn Soc. Mech. Engrs, 48 (1982)1496-1504. [108] Fleck, N. A., Finite-element analysis of plasticity induced crack closure under plane strain conditions. Eng. Fracture Mechanics., 25 (1986) 441-449. DOI:10.1016/0013-7944(86)90258-4. [109] Wei, L. W., James, M. N., A study of fatigue crack closure in polycarbonate ct specimens. Eng. Fracture Mechanics, 66 (2000) 223–42. DOI:10.1016/S0013-7944(00)00014-X. [110] Zhao, L. G., Tong, J., Byrne, J., The evolution of the stress–strain fields near a fatigue crack tip and plasticity- induced crack closure revisited. Fatig. Fract. Eng. Mater. Struct., 27(1) (2004) 19–29. [111] Chermahini, R. G., Three-dimensional elastic- plastic -finite-element analysis of fatigue crack growth and closure. PhD Thesis, Old Dominion University, Norfolk, VA, (1986). [112] Chermahini, R. G., Shivakumar, K. N., Newman, J. C. Jr., Three-dimensional finite-element simulation of fatigue crack growth and closure. ASTM STP 982, (1988) 398-413. DOI: 10.1520/STP982-EB. [113] Wu J, Ellyin F., A study of fatigue crack closure by elastic–plastic finite element analysis for constant-amplitude loading. Int. Journal of Fracture, 82 (1996) 43–65. DOI: 10.1007/bf00017863.

RkJQdWJsaXNoZXIy MjM0NDE=