Issue 35

L. C. H. Ricardo et alii, Frattura ed Integrità Strutturale, 35 (2016) 456-471; DOI: 10.3221/IGF-ESIS.35.52 468 [11] Newman, J.C. Jr., Raju, I., Stress-intensity factor equations for cracks in three-dimensional finite bodies subjected to tension and bending loads, Computational Methods in the Mech. of Fracture. In: Atluri SN, editor. Amsterdam: Elsevier, (1986) 311-334. DOI: 10.1002/zamm.19870671132. [12] Newman, J. C, The merging of fatigue and fracture mechanics concepts: a historical perspective, Progress in Aerospace Sciences, 34 (1998) 347-390. DOI:10.1016/s0376-0421(98)00006-2. [13] Frost, N. E., Dugdale, D. S., Journal of Mechanics and Physics of Solids, 6(2) (1958) 92-110. DOI:10.1016/0022-5096(58)90018-8. [14] Paris, P. C., Erdogan, F., Journal of Basic Engineering, 85 (1963) 528. [15] Head, A. K., The Philosophical Magazine, 44(7) (1953) 253. [16] Dugdale, D. S., Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8(2) (1960) 100-104. DOI:10.1016/0022-5096(60)90013-2. [17] Hairman, G. A., Provan, J. W., Fatigue crack tip plasticity revisited, The Issue of Shape Addressed, Theoretical and Appl. Frac. Mech. Journal, 26 (1997) 63-79. DOI: 10.1016/s0167-8442(96)00036-5. [18] Williams, M. L., On the stress distribution at base stationary crack, Journal of Applied Mechanics, 24 (1957) 111-114. [19] Rolfe, S. T., Barsom, J. M., Fracture and fatigue control in structures – applications of fracture mechanics, Prentice - Hall, New Jersey, (1977). DOI: 10.1520/MNL41-3RD-EB. [20] Murthy, A. R. C.; Palani, G. S., Iyer, N. R., State of art review on fatigue crack growth analysis under variable amplitude loading, IEI Journal, (2004) 118-129. [21] Wheeler, O. E., Spectrum loading and crack growth, Transactions of the ASME Series D’, Journal of Basic Engineering, 94 (1972) 181-186. [22] Willenborg, J. D.; Engle, R. M., Wood, H. A., A crack growth retardation model using an effective stress concept, AFFDL, TM-71-FBR, Air Force Flight Dynamics Laboratory, Wright Patterson Air force Base, OH, (1971). [23] Porter, T. R., Method of analysis and prediction of variable amplitude fatigue crack growth, Eng. Fracture Mechanics 4(4) (1972) 717-736. DOI:10.1016/0013-7944(72)90011-2. [24] Gray, T. D., Gallagher, J. P., Predicting fatigue crack retardation following a single overload using a modified Wheeler model, ASTM STP 590, (1976). DOI : 10.1520/STP590-EB. [25] Gallagher, J. P., Hughes, T. F., Influence of the yield strength on overload fatigue crack growth behavior of 4340 steel, AFFDL – TR-74-27, Air Force Flight Dynamics Laboratory, Wright Patterson Air force Base, OH, (1974). [26] Johnson, W. S., Multi-parameter yield zone model for predicting spectrum crack growth, ASTM STP 748, (1981) 85- 102. DOI: 10.1520/E0748-02R08 . [27] Chang, J. B., Hiyama, R. M., Szamossi, M., Improved methods for predicting spectrum loadings effects, AFWAL-TR- 81-3092, Air Force Flight Dynamics Laboratory, Wright Patterson Air force Base, OH, (1984). [28] Elber, W., The significance of fatigue crack closure, ASTM STP 486, (1971) 230- 242. DOI: 10.1520/STP486-EB. [29] Bell, P. D., Creager, M., Crack growth analyses for arbitrary spectrum loading, AFFDL-TR-74-129, Air Force Flight Dynamics Laboratory, Wright Patterson Air force Base, OH, (1974). [30] Newman, J. C., A finite element analysis fatigue crack closure, NASA TM X 72005, NASA, Hampton, VA, (1975). [31] Dill, H. D., Saff, C. R., Spectrum crack growth prediction method based on crack surface displacement and contact analyses, Fatigue crack growth under spectrum loads, ASTM STP 595, (1976) 306–319. DOI: 10.1520/STP595-EB. [32] Kanninnen, M. F., Atkinson, C., Feddersen, C. E., A fatigue crack growth analysis method based on a single representation of crack tip plasticity, ASTM STP 637, (1977) 122-140. DOI: 10.1520/STP637-EB. [33] Budianski, B., Hucthinson, J. W., Analysis of closure in fatigue crack growth, Journal of Applied Mechanics, 45 (1978) 267-276. DOI 10.1115/1.34.24286. [34] de Koning, A. U., A Simple crack closure model for predictions of fatigue crack growth rates under variable amplitude loading, ASTM STP 743, (1981) 63-85. DOI: 10.1520/STP743-EB. [35] Corbly, D. M., Packman, P. F., On The influence of single and multiple peak overloads on fatigue crack propagation in 7075-T6511 aluminum, Eng. Fracture Mech., 5 (1973) 479-497. DOI:10.1016/0013-7944(73)90034-9. [36] Schijve, J., Brock, D., de Rigle, P., NLR, Report M2094, Amsterdam, (1962). [37] Hardrarth, H. F., McEvily, A . T., In: Proc. Crack propagation symposium, Cranfield, 1 (1961). [38] Jonds, D., Wei, R. P., An exploratory study of delay effects in fatigue crack growth, Int. J. Fracture Mechanics, 7 (1971). [39] von Ewu, E., Hertzberg, R., Roberts, R., Delay defects in fatigue crack propagation, nat. symposium F.M., (1971) 7. [40] Hudson, C. M., Effect of stress ratio on fatigue-crack growth in 7075-T6 and 2024-T3 alumina-alloy specimens. TNL-5390, NASA, (1969). [41] Crooker, T. W., Effect of T. C., Cycling on fatigue grade growth in high strength alloys, NRL Report 7220, (1971).

RkJQdWJsaXNoZXIy MjM0NDE=