Issue 35

O. Plekhov et alii, Frattura ed Integrità Strutturale, 35 (2016) 414-423; DOI: 10.3221/IGF-ESIS.35.47 423 [3] Botvina, L.R., Gigacyclic fatigue – a new problem of physics and mechanics of fracture, Zavodskaya laboratoria, 70 (2004) 41. [4] Shaniavski, A.A., Skvortsov, G.V., Crack growth in the gigacycle fatigue regime for helicopter gears, Fatigue & Fracture of Engineering Materials & Structures, 22 (1999) 609-619. [5] Sakai, T., Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use, Journal of solid mechanics and materials engineering, 3 (2009) N 3 425-439. [6] Wang, Q.Y., Berard, J.Y., Rathery, S., Bathias, C., High cyclic fatigue carack initiation and propagation behavior of high strength spring steel wires, Fatigue & Fracture of Engineering Materials & Structures, 22 (1999) 673-677. [7] Sun, C., Xie, J., Zhao, A., Lei, Z., Hong, Y., A cumulative damage model for fatigue life estimation of high-strength steels in high-cycle and very-high-cycle fatigue regime, Fatigue &Fracture of Engineering Materials & Structures, 5 (2012) 638-647. [8] Shiozawa, K., Morii, Y., Nishino, S., Lu, L., Subsurface crack initiation and propagation mechanisms in high strength steel in a very high cyclic fatigue regime, Int. J. Fatigue, 28 (2006) 1521-1532. [9] Tanaka, K., Akiniwa, Y., Fatigue crack propagation behaviour derived from S–N data in very high cycle regime, Fatigue Fract. Eng. Mater. Struct, 25 (2002) 775–784. [10] Wang, Q. Y., Bathias, C., Kawagoishi, N., Chen, Q., Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength, Int. J. Fatigue 24 (2002) 1269–1274. [11] Tanaka, K., Mura, T., A dislocation model for fatigue crack initiation, J. Appl. Mech, 48 (1981) 97–103. [12] Chapetti, M. D., Tagawa, T., Miyata, T., Ultra-long cycle fatigue of high-strength carbon steels part II: Estimation of fatigue limit for failure from internal inclusions, Mater. Sci. Eng., 356 ( 2003) 236–244. [13] Wang, C., Wagner, D., Wang, Q.Y., Bathias, C., Gigacycle fatigue initiation mechanism in Armco iron. International Journal of Fatigue, 45 (2012) 91-97. [14] Betekhtin, V. I., Kadomtsev, A. G., Evolution of microscopic cracks and pores in solids under loading. Physics of the solid state, 47 (2005) 825–831. [15] Plekhov, O. A., Naimark, O. B., Theoretical and experimental study of energy dissipation in the course of strain localization in iron Journal of Applied Mechanics and Technical Physics, 50 (2009) 127-136.

RkJQdWJsaXNoZXIy MjM0NDE=