Issue 35

Y. Besel et alii, Frattura ed Integrità Strutturale, 35 (2016) 295-305; DOI: 10.3221/IGF-ESIS.35.34 304 fatigue loading, the effect of JLR on crack growth rates as well as the applicability of linear elastic fracture mechanics and e.g. its K-concept should be investigated. A CKNOWLEDGEMENT he authors would like to express their sincere gratitude to the Japanese Society for the Promotion of Science for funding most of this work under the “JSPS Postdoctoral Fellowship (Short-Term) for North American and European Researchers” (FY 2012). Further thanks to the colleagues from the Institute for Materials Research of the German Aerospace Center in Cologne, namely Mr. Sauer for providing the FSW joints and Mr. Fuchs for mechanical testing. R EFERENCES [1] Thomas, W. M., Nicholas, E. D., Needham, J. C., Murch, M. G., Temple-Smith, P., Dawes, C. J, Improvements relating to friction welding. European Patent Specification EP 0 615 480 B1, (1992). [2] Leonard, A.J., Lockyer S.A., Flaws in friction stir welds, Proc. of 4th Int. Symposium on Friction Stir Welding, Park City, Utah, USA, (2003). [3] Kim, Y.G., Fujii, H., Tsumura, T., Komazaki, T., Nakata, K., Three defect types in friction stir welding of aluminum die casting alloy, Mat. Sci. Eng. A, A415 (2006) 250–254. [4] Sato, Y.S., Takauchi, H., Park, S.H.C., Kokawa, H., Characteristics of the kissing-bond in friction stir welded Al alloy 1050, Mater. Sci. Eng. A, A405 (2005) 333–338. [5] Peel, M., Steuwer, A., Preuss, M., Withers, P.J., Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083, Acta Mater., 51 (2003) 4791–4801. [6] Sato, Y.S., Yamashita, F., Sugiura, Y., Park, S.H.C., Kokawa, H., FIB-assisted TEM study of an oxide array in the root of a friction stir welded aluminium alloy, Scripta Mater., 50 (2004) 365–369. [7] Oosterkamp, A., Oosterkamp, L.D., Nordeide, A., ‘Kissing Bond‘ Phenomena in Solid-State Welds of Aluminum Alloys, Welding Journal, 83, (2004) 225–231. [8] Dickerson, T.L., Przydatek, J., Fatigue of friction stir welds in aluminium alloys that contain root flaws, Int. J. of Fatigue, 25 (2003) 1399–1409. [9] Vugrin, T., Schmuecker, M., Staniek, G., Root Flaws of Friction Stir Welds – an Electron Microscopy Study, in K.V. Jata et al. (ed.): Friction Stir Welding and Processing III, The Minerals, Metals and Materials Society, 2005, pp. 277- 284. [10] Liu, H.J., Chen, Y.C., Feng, J.C., Effect of zigzag line on the mechanical properties of friction stir welded joints of an Al-Cu alloy, Scripta Mater., 55 (2006) 231–234. [11] Ren, S.R., Ma, Z.Y., Chen, L.Q., Effect of initial butt surface on tensile properties and fracture behavior of friction stir welded Al-Zn-Mg-Cu alloy, Mater. Sci. Eng. A, A479 (2008) 293–299. [12] Zhou, C., Yang, X., Luan, G., Effect of oxide array on the fatigue property of friction stir welds, Scripta Mater., 54 (2006) 1515–1520. [13] Di, S., Yang, X., Luan, G., Jian, B., Comparative study on fatigue properties between AA2024-T4 friction stir welds and base materials, Mater. Sci. Eng. A, A435–436 (2006) 389-395. [14] Jolu, T.L., Morgeneyer, T.F., Gourgues-Lorenzon, A.F., Effect of joint line remnant on fatigue lifetime of friction stir welded Al-Cu-Li alloy, Science and Technology of welding and joining, 15 (2010) 694–698. [15] Uematsu, Y., Tokaji, K., Shibata, H., Tozaki, Y., Ohmune, T., Fatigue behavior of friction stir welds without neither welding flash nor flaw in several aluminium alloys, Int. J. of Fatigue, 31 (2009) 1443–1453. [16] Filatov, Y.A., Yelagin, V.I., Zakharov, V.V., New Al-Mg-Sc alloys, Mater. Sci. Eng. A, A280 (2000) 97–101. [17] Riddle, Y.W., Sanders, T.H., A study of coarsening, recrystallization, and morphology of microstructure in Al-Sc-(Zr)- (Mg) alloys, Metall. Mater. Trans. A, 35A (2004) 341–350. [18] Michel, S.A., Oxidation and fatigue crack growth in aluminium alloys, Proc. of 3rd Int. Conf. Microscopy of Oxidation, Cambridge UK, (1996). [19] Frigaard, O., Grong, O., Mildling, O.T., A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys, Metall. Mater. Trans A, 32A (2001) 1189–1200. T

RkJQdWJsaXNoZXIy MjM0NDE=