Issue 35
G. Gobbi et alii, Frattura ed Integrità Strutturale, 35 (2016) 260-270; DOI: 10.3221/IGF-ESIS.35.30 269 between the plane strain and plane stress modelling configurations the more suitable to represent the experimental results is the plane strain; the developed model seems a tool able to provide a proper description of the behavior of the material in presence of hydrogen, but still needs improvements to clarify the influence of trap sites to the embrittlement phenomenon. R EFERENCES [1] Fassina, P., Brunella, M.F., Lazzari, L., Re, G., Vergani, L., Sciuccati, A., Effect of hydrogen and low temperature on fatigue crack growth of pipeline steels. Engineering Fracture Mechanics, 103 (2013) 10-25. DOI: 10.1016/j.engfracmech.2012.09.023. [2] Irani, R.S., Hydrogen Storage: high-pressure gas containment, MRS Bulletin 27 (2002) 680-682. DOI: 10.1557/mrs2002.221. [3] Evans M.-H., Richardson A.D., Wang L., Wood R.J.K., Serial sectioning investigation of butterfly and white etching crack (WEC) formation in wind turbine gearbox bearings, Wear, 302 (2013) 1573–1582. DOI: 10.1016/j.wear.2012.12.031. [4] Kohara, M., Kawamura, T., Egami, M., Study on mechanism of hydrogen generation from lubricants, Tribology Transactions, 49 (2006) 53-60. DOI: 10.1080/05698190500486324. [5] Jha, A.K., Ramesh Narayanan, P., Sreekumar, K., Mittal, M.C., Ninan, K.N., Hydrogen embrittlement of 3.5Ni– 1.5Cr–0.5Mo steel fastener, Engineering Failure Analysis, 15 (2008) 431–439. DOI:10.1016/j.engfailanal.2007.05.008. [6] Taha, A., Sofronis, P., A micromechanics approach to the study of hydrogen transport and embrittlement, Engineering Fracture Mechanics, 68 (2001) 803-837. [7] Thomas, R.L.S., Li, D., Gangloff, R.P., Scully, J.R., Trap-governed hydrogen diffusivity and uptake capacity in ultrahigh-strength AERMET 100 steel, Metallurgical and Materials Transactions A, 33A (2002) 1991-2004. [8] Thomas, R.L.S., Scully, J.R., Gangloff, R.P., Internal hydrogen embrittlement of ultrahigh-strength AERMET 100 steel, Metallurgical and Materials Transactions A, 34A (2003) 327-344. [9] Oriani, R.A., The diffusion and trapping of hydrogen in steel, Acta Metallurgica, 18 (1970) 147-157. [10] Fallahmohammadi, E., Bolzoni, F., Fumagalli, G., Re, G., Benassi, G., Lazzari, L., Hydrogen diffusion into three metallurgical microstructures of a C-Mn X65 and low alloy F22 sour service steel pipelines, International Journal of Hydrogen Energy, 39 (2014) 13300-13313. DOI: 10.1016/j.ijhydene.2014.06.122. [11] Troiano, A., The role of hydrogen and other interstitials in the mechanical behavior of metals, Trans ASM, 52 (1960) 54-80. [12] Beachem, C., A new model for hydrogen-assisted cracking (hydrogen embrittlement), Metallurgical and Materials Transactions B, 3 (1972) 441-455. [13] Gangloff, R.P., Wie, R.P., Gaseous hydrogen embrittlement of high strength steels, Metallurgical transactions A, 8A (1977) 1043-1053. [14] Scheider, I., Pfuff, M., Dietzel, W., Simulation of hydrogen assisted stress corrosion cracking using the cohesive model. Engineering Fracture Mechanics, 75 (2008) 4283-4291. DOI: 10.1016/j.engfracmech.2007.10.002. [15] Olden, V., Thaulow, C., Johnsen, R., Øtby, E., Berstad, T., Application of hydrogen influenced cohesive laws in the prediction of hydrogen induced stress cracking in 25%Cr duplex stainless steel, Engineering Fracture Mechanics, 75 (2008) 2333-2351. DOI: 10.1016/j.engfracmech.2007.09.003. [16] Moriconi, C., Hénaff, G., Halm, D., Cohesive zone modelling of fatigue crack propagation assisted by gaseous hydrogen in metals, International Journal of Fatigue, 68 (2014) 56-66. DOI: 10.1016/j.ijfatigue.2014.06.007. [17] Colombo, C., Fumagalli, G., Bolzoni, F., Gobbi, G., Vergani, L., Fatigue behavior of hydrogen pre-charged low alloy Cr-Mo steel, International Journal of Fatigue, (submitted, 2014). [18] Park, K., Paulino, G.H., Computational implementation of PPR potential-based cohesive model in ABAQUS: Educational perspective, Engineering fracture mechanics, 93 (2012) 239-262. [19] Schwalbe, K-H, Scheider, I., Cornec, A., Guidelines for applying cohesive models to the damage behaviour of engineering materials and structures, Springer, Heidelberg, (2013). [20] Abaqus v.6.12 documentation, Dassault Systèmes Simulia Corp. [21] Serebrinsky, S., Carter, E. A., Ortiz, M., A quantum-mechanically informed continuum model of hydrogen embrittlement, Journal of the Mechanics and Physics of Solids, 52 (2004) 2403-2430. DOI: 10.1016/j.jmps.2004.02.010.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=