Issue 35

T. Auger et alii, Frattura ed Integrità Strutturale, 35 (2016) 250-259; DOI: 10.3221/IGF-ESIS.35.29 259 tEBSD). The information gained is qualitatively important since we now know that we have to deal with an intergranular cracking phenomenon. The modeling of this class of LME cases involves a full field description of the 3D microstructure coupled with crystalline plasticity. LME fracture criteria will be able to be compared with experimental results within such a framework in a future work. R EFERENCES [1] Nicholas, M.G., Old, C.F., Review Liquid metal embrittlement, Journal of Materials Science, 14 (1979) 1-18. [2] Coen, G., Van den Bosch, J., Almazouzi, A., Degrieck, J., Investigation of the effect of lead-bismuth eutectic on the fracture properties of T91 and 316L, Journal of Nuclear Materials, 398 (2010) 122-128. [3] Skeldon, P., Hilditch, J.P., Hurley, J.R., Tice, D.R., The liquid metal embrittlement of 9Cr steel in sodium environments and the role of non-metallic impurities, Corrosion Science, 36 (1994) 593-610. [4] Lynch, S.P., A fractographic study of gaseous hydrogen embrittlement and liquid-metal embrittlement in a tempered- martensitic steel, Acta Metall., 32 (1984) 79-90. [5] Lynch, S.P., Metallographic contributions to understanding mechanisms of environmentally assisted crackingMetallography, 23 (1989) 147-171. [6] Martin, M.L., Auger, T., Johnson, D.D., Robertson, I.M., Liquid-metal-induced fracture mode of martensitic T91 steels, Journal of Nuclear Materials, 426 (2012) 71-77. [7] Hamdane, O., Proriol-Serre, I., Vogt, J.B., Nuns, N., ToF-SIMS analyses of brittle crack initiation of T91 steel by liquid sodium, Materials Chemistry and Physics 145, (2014) 243-249. [8] Hémery, S., Auger, T., Courouau, J.-L., Balbaud-Célérier, F., Liquid metal embrittlement of an austenitic stainless steel in liquid sodium, Corrosion Science, 83 (2014) 1-5. [9] Hémery, S., Auger, T., Courouau, J.-L., Balbaud-Célérier, F., Effect of oxygen on liquid sodium embrittlement of T91 martensitic steel, Corrosion Science, 76 (2013) 441-452. [10] Hilditch, J.P., Hurley, J.R., Skeldon, P., Tice, D.R., The liquid metal embrittlement of iron and ferritic steels in sodium, Corrosion Science, 37 (1995) 445-454. [11] Legris, A., Nicaise, G., Vogt, J.-B., Foct, J., Liquid metal embrittlement of the martensitic steel 91: influence of the chemical composition of the liquid metal: Experiments and electronic structure calculations, Journal of Nuclear Materials, 301 (2002) 70-76. [12] J. Kargol, A., Albright, D.L., The effect of relative crystal orientation on the liquid metal induced grain boundary fracture of aluminum bicrystals, Metallurgical Transaction A, 8 (1977) 27-34. [13] Quey, R., Dawson, P.R., Barbe, F., Computer Methods in Applied Mechanics and Engineering, 200 (2011) 1729-1745. [14] Simonovski, I., Cizelj, L., Computational Materials Science, 50 (2011) 1606-1618. [15] Rey, C., Fandeur, C., Simulation par la méthode des éléments finis du comportement mécanique local des polycristaux. Couplages physiques. ECP SCIENCE. Rayonnement synchrotron rayons X et Neutrons au Service des Matériaux, ECP Sciences ed., (2013) 410-448. [16] Schwartz, J., PhD thesis, ECP, France, (2010). [17] Peirce, D., Asaro, R.J., Needleman, A., Material rate dependence and localized deformation in crystalline solids, Acta Metall., 31 (1983) 1951-1976. [18] Tabourot, L., Fivel, M., Rauch, E., Generalised constitutive laws for fcc single crystals, Mat. Sci. Eng. A, 234 (1997) 639-642. [19] Erieau, P., Rey, C., Modelling of deformation and rotation bands and of deformation induced grain boundaries in IF Steel aggregate during large plane strain compression, International Journal of Plasticity, 20 (2004) 1763-1788. [20] Griffith, A.A., The Phenomena of Rupture and Flow in Solids, Phil. Trans. R. Soc. Lond., A 221 (1921) 163-198. [21] Hirth, J.P., Rice, J., On the Thermodynamics of Adsorption at Interfaces as it Influences Decohesion, Metallurgical Transactions A, 11A (1980) 1501-1511.

RkJQdWJsaXNoZXIy MjM0NDE=