Issue 35
T. Holušová et alii, Frattura ed Integrità Strutturale, 35 (2016) 242-249; DOI: 10.3221/IGF-ESIS.35.28 249 BIA2013-48352-P. R EFERENCES [1] Karihaloo, B. L., Fracture mechanics of concrete, Longman Scientific & Technical, New York, (1995). [2] RILEM Report 5 Fracture Mechanics Test Methods for Concrete (S. P. Shah & A. Carpinteri eds.), Chapman and Hall, London, (1991). [3] Tschegg, E. K., Equipment and appropriate specimen shapes for tests to measure fracture values, Austrian Patent Nr. 390328, Austrian Patent Office, (1986). [4] ASTM International Standard E399-06, Standard test method for linear-elastic method of plane-strain fracture toughness KIC of metallic materials, (2006) 1-32. [5] Lee, M. K., Barr, B. I. G., An overview of the fatigue behavior of plain and fibre reinforced concrete, Cement & Concrete Composites, 26 (2004) 299-305. [6] S., Seitl, H., Šimonová, Z., Keršner, A., Fernández-Canteli, Evaluation of concrete fatigue measurement using standard and non-linear regression model, Applied Mechanics and Materials, 121-126 (2012) 2726-2729. [7] Šimonová, H., Kucharczyková, B., Havlíková, I., Seitl, S., Keršner, Z., Complex evaluation of fatigue tests results of plain C30/37 and C45/45 class concrete specimens, Key Engineering Materials, 592-593 (2014) 801-804. [8] Korte, S., Boel, V, De Corte, W., De Schutter, G., Static and fatigue fracture mechanics properties of self-compacting concrete using three-point bending tests and wedge-splitting tests, Construction and Building Materials, 57 (2014) 1– 8. [9] Pryl, D., Červenka, J., Pukl, R., Material model for finite element modelling of fatigue crack growth in concrete, Procedia engineering, 2 (2010) 203-212. [10] Pryl, D., Mikolaskova, J., Pukl, R., Modeling fatigue damage of concrete, Key Engineering Materials, 577-578 (2014) 385-388. [11] Holušová, T., Seitl, S., Fernández-Canteli, A., Comparison of fracture energy values obtained from 3PB, WST and CT test configurations, Special Issue of Advanced Material Research, 969 (2014) 89–92. [12] Holušová, T., Seitl, S., Fernández-Canteli, A., Modified compact tension test: The influence of the steel bars position. 20 th International Conference Engineering Mechanics, (2014) 220–223. [13] Holušová, T., Seitl, S., Fernández-Canteli, A., Numerical Simulation of Modified Compact Tension Test depicting of Experimental Measurement by ARAMIS, Key Engineering Materials, 627 (2014) 277–280. [14] Fernández-Canteli, A., Castañón, L., Nieto, B., Lozano, M., Holušová, T., Seitl, S., Determining fracture energy parameters of concrete from the modified compact tension test, Fracture and structural integrity, 30 (2014) 383–393. [15] RILEM TC-50 FMC Recommendation Determination of the fracture energy of mortar and concrete by means of three-point bend test on notched beams, Materials & Structures, (1985). [16] Červenka, V., Červenka, J., Pukl, R., ATENA – A tool for engineering analysis of fracture in concrete, Sadhama- Academy Proceedings in Engineering Sciences, 27 (4) (2002) 485–492. [17] Cifuentes, H., Lozano, M., Holušová, T., Medina, F., Seitl, S., Fernández-Canteli, A., Applicability of a Modified Compact Tension Specimen for Measuring the Fracture Energy of Concrete, 32 CEFIE (32 GEF) FractUSal 2015 , Anales de Mechanica de la Fractura, 32 (2015) 208–213.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=