Issue 35

S. Barter et alii, Frattura ed Integrità Strutturale, 35 (2016) 132-141; DOI: 10.3221/IGF-ESIS.35.16 141 [7] Molent, L., Barter, S. A. A comparison of crack growth behaviour in several full-scale airframe fatigue tests. Int. Journal of Fatigue, 29(6) (2007) 1090-1099. [8] ASTM E647-13a - Standard Test Methods for Measurement of Fatigue Crack Growth Rates, ed.: Am. Soc. Testing Mats., (2014). [9] Edwards, P., Newman, J., Short-Crack Behaviour in Various Aircraft Materials, NATO, AGARD-R-767, (1990). [10] Elber, W., The significance of fatigue crack closure. ASTM STP486 American Society for Testing and Materials, West Conshohocken, Pennsylvania, USA, (1971) 230-242. [11] Suresh, S., Fatigue of Materials, 2nd ed. Cambridge: Cambridge University Press, 14 (1998). [12] Wanhill, R. J. H., Barter, S., Molent, L, Fracture Mechanics in Aircraft Failure Analysis: Uses and Limitations, Eng. Failure Anal., 35 (2013) 33-45. [13] McMillam, J. C., Pelloux R. M. N. Fatigue crack propagation under program and random loads. Fatigue crack propagation, ASTM STP, Am. Soc. Testing Mats., (1967) 505-535. [14] van der Linden, H. H., Modifications of flight-by-flight load sequences to provide for good fracture surface readability. In: Fatigue crack topography. AGARD conference proceedings, (1984) 376. [15] Forsyth, P. J. E., A two stage process of fatigue crack growth. In Crack Propagation: Proc. of Cranfield Sym. London: Her Majesty’s Stationery Office, (1962) 76-94. [16] White, P., Barter, S. A., Wright, C. Small crack growth rates from simple sequences containing underloads in AA7050- T7451, Journal of Fatigue, 31 (2009) 1865–1874. [17] Laird, C., Smith, G.C., Crack propagation in high stress fatigue, Phil Mag., 7 (1962) 847–857. [18] Pelloux, R. M. N., Crack extension by alternating shear, Eng Fract Mech, 1 (1970) 697–704. [19] Abelkis, P. R. A., Study of fatigue crack propagation under spectrum loading through the use of microfractography, In: Fatigue of structures, New Orleans (LA), (1975) 17–20. [20] Suresh, S., Ritchie, R. O., Propagation of short fatigue cracks. International Metals Reviews, Elsevier, 29 (1984) 445-476. [21] Krkoska, M., Barter, S.A., Alderliesten, R.C., White, P., Benedictus, R., Fatigue crack paths in AA2024-T3 when loaded with constant amplitude and simple underload spectra, Engineering Fracture Mechanics, 77(11) (2010) 1857-1865. [22] Ulmer, D. G, Altstetter, C. J., Hydrogen-induced strain localization and failure of austenitic stainless steels at high hydrogen concentrations, Acta Metall Mater, (1991) 1237–1248. [23] Suresh, S., Crack deflection: implications for growth of long and short cracks. Metallurgical Transactions, 14A (1983) 2375- 2385. [24] Burchill, M., Barter, S., Jones, M., The effect of crack growth retardation when comparing constant amplitude to variable amplitude loading in an aluminium alloy. Advanced Materials Research, 891-892 (2014) 948-954. [25] Murakami, Y., Editor in-chief, Stress intensity factors handbook, Pergamon Press. (1986) 709. [26] Harter, J. A. AFGROW Users Guide and Technical Manual, Air Vehicles Directorate, Air Force Research Laboratory, WPAFB OH USA AFRL-VA-WP-TR-206, (2006).

RkJQdWJsaXNoZXIy MjM0NDE=