Issue 35
P. Bernardi et al, Frattura ed Integrità Strutturale, 35 (2016) 98-107; DOI: 10.3221/IGF-ESIS.35.12 107 R EFERENCES [1] Vecchio. F.J., Collins, M.P., The response of RC elements to in-plane shear and normal stresse, Rep. 82-03, Dept. of Civ. Eng., Univ. of Toronto, Canada (1982) [2] Rots, J. G., Computational modelling of cracked concrete, PhD thesis, Dept. of Civ. Eng., Delft Univ. of Technol., Delft, The Netherlands (1988) [3] Hsu, H.T., Schnobrich, W.C., Nonlinear finite element analysis of reinforced concrete plates and shells under monotonic loading, Comp. & Struct, 38(5/6) (1991) 637-651 [4] Vecchio, F.J., Disturbed stress field model for reinforced concrete: formulation. ASCE J. Struct. Eng., 126(9) (2000) 1070–1077. [5] Soltani, M., An, X., Maekawa, K., Computational model for post cracking analysis of RC membrane element based on local strain characteristics, Engng Struct, 25 (2003) 995-1007. [6] He W., Wu, Y.F., Liew, K.M., Wu, Z., A 2D total strain based constitutive model for predicting the behaviors of concrete structures, Int J Engng Science, 44 (2006) 1280-1303 [7] Cerioni, R., Iori, I., Michelini, E., Bernardi, P., Multi-directional modeling of crack pattern in R/C members, Eng. Fract. Mech., 75 (2008) 615-628. DOI: 10.1016/j.engfracmech.2007.04.012 [8] Kupfer, H., Hilsdorf, H.K., Rusch, H., Behavior of concrete under biaxial stresses, Proc. ACI J., 66 (1969) 656–666. [9] Kupfer, H., Gerstle, K.H., Behavior of concrete under biaxial stresses, ASCE J. Eng. Mech. Div., 99 (1973) 853-866. [10] Ottosen, N.S., A failure criterion for concrete, ASCE J. Eng. Mech. Div., 103-EM4 (1977) 527-535. [11] Menétrey Ph., Willam, K.J., Triaxial failure criterion for concrete and its generalization, ACI Struct. J., 92 (1995) 311- 318. [12] Kwak, H.-G., Filippou, F.C., Finite element analysis of structures under monotonic loads, Rep. UCB/SEMM-90/14, Dept. of Civ. Eng., Univ. of California, Berkeley, California (1990). [13] Darwin, D., Pecknold, D.A., Non-linear biaxial stress–strain law for concrete, J. Engng. Mech. Div.: Proc. ASCE, 103- EM2 (1977) 229–241. [14] Ottosen, N.S., Constitutive model for short-time loading of concrete, ASCE J. Eng. Mech. Div., 105 (1979) 127-141. [15] Ottosen, N.S., Nonlinear finite element analysis of reinforced concrete structures, Ph.D. Thesis, Technical University of Denmark, (1980). [16] Barzegar-Jamshidi, F., Nonlinear finite element analysis of reinforced concrete under short term loading, Ph.D. Thesis, University of Illinois at Urbana-Champaign, (1986). [17] Vecchio, F.J., Shim, W., Experimental and Analytical Reexamination of Classic Concrete Beam Test, J. Struct. Eng., 130 (2004) 460-469. [18] Podgorniak-Stanik, B.A., The influence of concrete strength, distribution of longitudinal reinforcement, amount of transverse reinforcement and member size on shear strength of reinforced concrete members, PhD Thesis, University of Toronto, (1998). [19] Leonhardt, F., Walther, R., Schubversuche an einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung, Deutscher Ausschuss für Stahlbeton, H.151, Ernst & Sohn (1962). [20] Bresler, B., Scordelis, A.C., Shear strength of reinforced concrete beams, J. Am. Concr. Inst., 60 (1963) 51–72. [21] Bernardi, P., Cerioni, R., Michelini, E., Analysis of post-cracking stage in SFRC elements through a non-linear numerical approach, Eng. Fract. Mech., 108 (2013) 238-250. DOI: 10.1016/j.engfracmech.2013.02.024 [22] Cerioni, R., Bernardi, P., Michelini, E., Mordini, A., A general 3D approach for the analysis of multi-axial fracture behavior of reinforced concrete elements, Eng. Fract. Mech., 78 (2011) 1784-1793. [23] Bernardi, P., Cerioni, R., Michelini, E., Numerical modelling of the behaviour of SFRC elements in presence of multiple cracks, in: J. Barros et al. (Eds.), Proc. 8 th RILEM Int. Symposium on fibre reinforced concrete, Guimarães, (2012) 219-220. [24] Bernardi, P., Cerioni, R., Michelini, E., Numerical modeling of bond in cracked reinforced concrete elements, in: J.W. Cairns et al. (Eds.), Proc. Of Bond In Concrete 2012: Bond, Anchorage, Detailing, Brescia (2012) 177-184. [25] Elwi, A.A., Murray, D.W., A 3D hypoelastic concrete constitutive relationship, J. Engng. Mech. Div.: Proc. ASCE, 105-EM4 (1979) 623–641. [26] Ramaswamy, A., Barzegar, F., Voyiadjis, G.Z., Postcracking formulation for analysis of RC structures based on secant stiffness, ASCE J. Eng. Mech., 120 (1994) 2621-2640. [27] Sebastian, W.M., McConnel, R.E., Nonlinear FE analysis of steel-concrete composite structures, ASCE J. Struct. Eng., 126 (2000) 662-674. [28] ABAQUS 6.10, Online Documentation, Dassault Systémes Simulia Corporation, Providence (2010).
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=