Issue34

N.R. Gates et alii, Frattura ed Integrità Strutturale, 34 (2015) 27-41; DOI: 10.3221/IGF-ESIS.34.03 41 [3] Tanaka, K., Small fatigue crack propagation in notched components under combined torsional and axial loading, Procedia Eng., 2 (2010) 27–46. [4] Zhang, H., Fatemi, A., Short Fatigue crack growth behaviour under mixed-mode loading, Int. J. Fract., 165 (2010) 1– 19. [5] Qian, J., Fatemi, A., Fatigue crack growth under mixed-mode I and II loading, Fatigue Fract. Eng. Mater. Struct., 19:1 (1996) 1277–1284. [6] Socie, D. F., Marquis, G. B., Multiaxial Fatigue, Society of Automotive Engineers, Inc., Warrendale, PA, (2000). [7] Murakami, Y., Takahashi, K., Kusumoto, R., Threshold and growth mechanism of fatigue cracks under mode II and III loadings, Fatigue Fract. Eng. Mater. Struct., 26 (2003) 523–531. [8] Doquet, V., Bertolino, G., Local approach to fatigue cracks bifurcation, Int. J. Fatigue, 30 (2008) 942–950. [9] Tanaka, K., Small crack propagation in multiaxial notch fatigue, Proceedings of the 4th International Conference on Crack Paths (CP 2012), Gaeta, Italy, (2012) 31–45. [10] Pokluda, J., Pippan, R., Vojtek, T., Hohenwarter, A., Near-threshold behaviour of shear-mode fatigue cracks in metallic materials, Fatigue Fract. Eng. Mater. Struct., 37 (2014) 232–254. [11] Tschegg, E. K., Mode III and Mode I fatigue crack propagation behaviour under torsion loading, J. Mater. Sci., 18 (1983) 1604–1614. [12] Shamsaei, N., Fatemi, A., Small fatigue crack growth under multiaxial stresses, Int. J. Fatigue, 58 (2014) 126–135. [13] Marco, S. M., Starkey, W. L., A Concept of Fatigue Damage, Trans. ASME, 76 (1954) 627–632. [14] Qian, J., Fatemi, A., Mixed mode fatigue crack growth: a literature survey, Eng. Fract. Mech., 55 (1996) 969–990. [15] Erdogan, F., Sih, G. C., On the crack extension in plates under plane loading and transverse shear, ASME J. Basic Eng., 85 (1963) 519–525. [16] Tanaka, K., Fatigue crack propagation from a crack inclined to the cyclic tensile axis, Eng. Fract. Mech., 6 (1974) 493–507. [17] Murakami, Y., Takahashi, K., Torsional fatigue of a medium carbon steel containing an initial small surface crack introduced by tension-compression fatigue: crack branching, non-propagation and fatigue limit, Fatigue Fract. Eng. Mater. Struct., 21 (1998) 1473–1484. [18] Makabe, C., Socie, D. F., Crack growth mechanism in precracked torsional fatigue specimens, Fatigue Fract. Eng. Mater. Struct., 24 (2001) 607–615. [19] Tong, J., Yates, R., Brown, M. W., A model for sliding mode crack closure Part I: Theory for pure mode II loading, Eng. Fract. Mech., 52:4 (1995) 599–611. [20] Tong, J., Yates, R., Brown, M. W., A model for sliding mode crack closure Part II: Mixed mode I and II loading and application, Eng. Fract. Mech., 52:4 (1995) 613–623. [21] Künkler, B., Düber, O., Köster, P., Krupp, U., Fritzen, C.-P., Christ, H.-J., Modelling of short crack propagation - Transition from stage I to stage II, Eng. Fract. Mech., 75 (2008) 715–725. [22] ASTM Standard E 2207-08: Standard Practice for Strain-Controlled Axial-Torsional Fatigue Testing with Thin- Walled Tubular Specimens, in: Bailey, S. J., Baldini, N. C. (Eds.), Annual Book of ASTM Standards, vol. 03.01, ASTM International, West Conshohocken, (2009) 1258–1265. [23] ASTM Standard E 1012-05: Standard Practice for Verification of Test Frame and Specimen Alignment Under Tensile and Compressive Axial Force Application, in: Bailey, S. J., Baldini, N. C. (Eds.), Annual Book of ASTM Standards, vol. 03.01, ASTM International, West Conshohocken, PA, (2009) 797–807. [24] Oberg, E., Jones, F. D., Horton, H. L., Ryffel, H. H., Machinery’s Handbook, twenty-sixth ed., Industrial Press Inc., New York, (2000). [25] Doquet, V., Bertolino, G., A material and environment-dependent criterion for the prediction of fatigue crack paths in metallic structures, Eng. Fract. Mech., 75 (2008) 3399–3412. [26] Military Handbook: Metallic Materials and Elements for Aerospace Vehicle Structures: MIL-HDBK-5H, United States Department of Defense, (1998). [27] Merati, A., A study of nucleation and fatigue behavior of an aerospace aluminum alloy 2024-T3, Int. J. Fatigue, 27 (2005) 33–44. [28] Murakami, Y., Fukushima, Y., Toyama, K., Matsuoka, S., Fatigue crack path and threshold in Mode II and Mode III loadings, Eng. Fract. Mech., 75 (2008) 306–318. [29] Beer, T., Crack Shapes During Biaxial Fatigue, Report No. 106, University of Illinois at Urbana-Champaign, Urbana, IL, (1984). [30] Vaziri, A., Nayeb-Hashemi, H., The effect of crack surface interaction on the stress intensity factor in Mode III crack growth in round shafts, Eng. Fract. Mech., 72 (2005) 617–629.

RkJQdWJsaXNoZXIy MjM0NDE=