Issue34

T. Itoh et alii, Frattura ed Integrità Strutturale, 34 (2015) 487-497; DOI: 10.3221/IGF-ESIS.34.54 496 C ONCLUSIONS 1. Multiaxial failure lives of Ti-6Al-4V depend on multiaxiality and decrease with increase of principal stress ratio, λ. The reduction is caused by cyclic ratcheting. 2. Crack mode at each λ’s test depends on specimen surface condition of machining. In biaxial loading test, failure life is affected by the crack mode. R EFERENCES [1] Kanazawa, K., Miller, K.J., Brown M.W., Cyclic deformation of 1%Cr-Mo-V steel under out-of-phase loads. Fatigue Eng Mater Struct, 2(3) (1979) 217  228. [2] McDowell, F.L., On the path dependence of transient hardening and softening to stable states under complex biaxial cyclic loading. In: Desai and Gallagher, editors. Proc int conf constitutive laws eng mater, (1983) 125-135. [3] Krempl, E., Lu, H., Comparison of the stress response of an aluminum alloy tube to proportional and alternate axial and shear strain paths at room temperature. Mechanics of Materials, 2(3) (1983) 183  192. [4] Socie, D.F., Multiaxial fatigue damage models. Trans Am Soc Mech Eng  J Eng Mater Technol, 109(4) (1987) 293  298. [5] Nitta, A., Ogata, T., Kuwabara, K., The effect of axial-torsional straining phase on elevated-temperature biaxial low- cycle fatigue life in SUS304 stainless steel. J Soc Mater Sci Jpn,. 36(403) (1987) 376  382. [6] Doong, S.H., Socie, D.F., Robertson, I.M., Dislocation substructures and nonproportional hardening. Trans Am Soc Mech Eng  J Eng Mater Technol, 112(4) (1987)456  465. [7] Fatemi, A., Socie, D.F., A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Eng Mate Struct, 11(3) (1988) 149  165. [8] Itoh, T., Sakane, M., Ohnami, M., Socie, D.F., Non-proportional low cycle fatigue criterion for type 304 stainless steel. Trans Am Soc Mech Eng  J Eng Mater Technol, 117(3) (1995) 285  292. [9] Chen, X., Gao, Q., Sun, X.F., Low-cycle fatigue under non-proportional loading. Fatigue Eng Mater Struct, 19(7) (1996) 839  854. [10] Itoh, T., Nakata, T., Sakane, M., Ohnami, M., Non-proportional low cycle fatigue of 6061 aluminum alloy under 14 strain path. In: Macha et al., editors. Multiaxial Fatigue and Fracture, Vol. 25. Elsevier International Series on Structural Integrity, (1999) 41  54. [11] Socie, D.F., Marquis, G.B., Multiaxial fatigue. SAE Int, (2000). [12] Itoh, T., Effect of direction change in maximum principal strain axis on multiaxial low cycle fatigue life of type 304 stainless steel at elevated temperature. J Soc Mater Sci Jpn, 49(9) (2000) 988  993. [13] Itoh, T., A model for evaluation of low cycle fatigue lives under non-proportional straining. J Soc Mater Sci, 50(12) (2001) 1317  1322. [14] Chen, X., An, K., Kim, K.S., Low-cycle fatigue of 1Cr-18Ni-9Ti stainless steel and related weld metal under axial, torsional and 90°out-of-phase loading. Fatigue Eng Mater Struct, 27(6) (2004) 439  448. [15] Shamsaei, N., Gladskyi, M., Panasovskyi, K., Shukaev, S., Fatemi, A., Multiaxial fatigue of titanium including step loading and load path alteration and sequence effects. Int J Fatigue, 32(11) (2010) 1862-1874. [16] Itoh, T., Yang, T., Material dependence of multiaxial low cycle fatigue lives under non-proportional loading. Int J Fatigue, 33(8) (2011) 1025  1031. [17] Kallmeyer, A.R., Krgo, A., Kurath, P., Evaluation of multiaxial fatigue life prediction methodologies for Ti-6Al-4V. Trans Am Soc Mech Eng  J Eng Mater Technol, 124(2) (2002) 229  237. [18] Mall, S., Namjoshi, S.A., Porter, W.J., Effects of microstructure on fretting fatigue crack initiation behavior of Ti-6Al- 4V. Materials Science and Engineering A, 383(2) (2004) 334-340. [19] Nakamura, H., Takanashi, M., Itoh, T., Wu, M., Shimizu, Y., Fatigue Crack Initiation and Growth Behavior of Ti-6Al- 4V under Non-Proportional Multiaxial Loading, 33(7) (2011) 842-848. [20] Findley, W.N., Modified theory of fatigue failure under combined stress. In: Proc society experimental stress analysis, 14 (1956) 35  46.

RkJQdWJsaXNoZXIy MjM0NDE=