Issue34

K.L. Yuan et alii, Frattura ed Integrità Strutturale, 34 (2015) 476-486; DOI: 10.3221/IGF-ESIS.34.53 486 [9] FOSTA Research Association for Steel Applications, RERRESH-Extension of the fatigue life of existing and new welded steel structures (2011). [10] Yekta, R.T., Ghahremani, K., Walbridge, S., Effect of quality control parameter variations on the fatigue performance of ultrasonic impact treated welds, Int J Fatigue, 55 (2013) 245-256. [11] Ghahremani, K ., Safa, M., Yeung, J., Walbridge, S., Haas, C., Dubois, S., Quality assurance for high-frequency mechanical impact (HFMI) treatment of welds using handheld 3D laser scanning technology, Weld World, 59(3) (2014) 391-400. [12] Statnikov, E., Physics and mechanism of ultrasonic impact treatment, IIW Document 13 (2004) 2004-04. [13] Dutta, R.K., Petrov, R.H., Delhez, R., Hermans, M., Richardson, I. M., Böttger, A. J., The effect of tensile deformation by in situ ultrasonic treatment on the microstructure of low-carbon steel, Acta Materialia, 61(5) (2013) 1592-1602. [14] Gao, H., Dutta, R.K., Huizenga, R.M., Amirthalingam, M., Hermans, M., Buslaps, T., Richardson, I.M., Stress relaxation due to ultrasonic impact treatment on multi-pass welds, Sci Technol Weld Joining, 19(6) (2014) 505-513. [15] Roy, S., Experimental and analytical evaluation of enhancement in fatigue resistance of welded details subjected to post-weld ultrasonic impact treatment, Diss. Lehigh University, (2006). [16] Le Quilliec, G., Lieurade, H. P., Bousseau, M., Drissi-Habti, M., Inglebert, G., Macquet, P., Jubin, L., Mechanics and modelling of high-frequency mechanical impact and its effect on fatigue, Weld World, 57.1 (2013) 97-111. [17] Yang, X., Zhou, J., Ling, X., Study on plastic damage of AISI 304 stainless steel induced by ultrasonic impact treatment, Mater Des, 36 (2012) 477-481. [18] Yang, X., Ling, X., Zhou, J., Optimization of the fatigue resistance of AISI304 stainless steel by ultrasonic impact treatment, Int J Fatigue, 61 (2014) 28-38. [19] Meguid, S. A., Shagal, G., Stranart, J. C., 3D FE analysis of peening of strain-rate sensitive materials using multiple impingement model, Int J Impact Eng, 27(2) (2002) 119-134. [20] Suzuki, T., Okawa, T., Shimanuki, H., Nose, T., Ohta, N., Suzuki, H., Moriai, A., Effect of ultrasonic impact treatment (UIT) on fatigue strength of welded joints, Adv Mat Res, 996 (2014) 736-742. [21] Statnikov, E., Method for modifying or producing materials and joints with specific properties by generating and applying adaptive impulses a normalizing energy thereof and pauses there between, U.S. Patent No. 7,301,123 (2007). [22] Izumi, O., Oyama, K., Suzuki, Y., Effects of superimposed ultrasonic vibration on compressive deformation of metals, Trans Jpn Inst Met, 7(3) (1966) 162-167. [23] ESI Group, SYSWELD Ver.2014 (2014). [24] Livermore Software Technology Corporation, LS-DYNA Keyword User’s Manual Ver. 971 (2007). [25] Yildirim, H.C., Marquis, G.B., A round robin study of high-frequency mechanical impact (HFMI)-treated welded joints subjected to variable amplitude loading, Weld World, 57(3) (2013) 437-447. [26] Tsuji, I., Estimation of stress concentration factor at weld toe of non-load carrying fillet welded joint, J Soc Naval Architects Jpn, 80 (1990) 241-251, in Japanese. [27] Glinka, G., Calculation of inelastic notch-tip strain-stress histories under cyclic loading. Eng Fract Mech, 22(5) (1985) 839-854. [28] American Petroleum Institute, API 579-1 Recommended Practice for Fitness-For-Service (2007). [29] The Japan Welding Engineering Society, WES 2805 Method of assessment for flaws in fusion welded joints with respect to brittle fracture and fatigue crack growth (1997).

RkJQdWJsaXNoZXIy MjM0NDE=