Issue34

F. Berto, Frattura ed Integrità Strutturale, 34 (2015) 11-26; DOI: 10.3221/IGF-ESIS.34.02 23 R EFERENCES [1] Tang, X.S., Sih, G.C., Weak and strong singularities reflecting multiscale damage: Micro-boundary conditions for free–free, fixed–fixed and free–fixed constraints, Theor. Appl. Fract. Mech., 43(2005) 5-62. DOI: 10.1016/j.tafmec.2004.12.002. [2] Sih, G.C. Tang, X.S., Scaling of volume energy density function reflecting damage by singularities at macro-, meso- and microscopic level, Theor. Appl. Fract. Mech., 43 (2005) 211-231. DOI: 10.1016/j.tafmec.2005.01.006. [3] Sih, G.C., Multiscaling in molecular and continuum mechanics: interaction of time and size from macro to nano, Springer, Dordrecht, (2007). DOI: 10.1007/978-1-4020-5062-6. [4] Sih, G.C., Crack tip mechanics based on progressive damage of arrow: Hierarchy of singularities and multiscale segments, Theor. Appl. Fract. Mech., 51 (2009) 1-32. DOI: 10.1016/j.tafmec.2009.01.007. [5] Sih, G.C. Ideomechanics of transitory and dissipative systems associated with length, velocity, mass and energy, Theor. Appl. Fract. Mech., 51(2009) 149-160. DOI: 10.1016/j.tafmec.2009.05.008. [6] Sih, G.C. Energy absorption and dissipation associated with mass activation and deactivation for open systems, Theor. Appl. Fract. Mech., 52 (2009), 63-71. DOI: 10.1016/j.tafmec.2009.08.008. [7] Lazzarin, P. Zambardi, R., A finite-volume-energy based approach to predict the static and fatigue behaviour of components with sharp V-shaped notches, Int. J. Fracture, 112 (2001) 275-298. DOI: 10.1023/A:1013595930617. [8] Lazzarin, P., Lassen, T., Livieri, P., A Notch Stress Intensity approach applied to fatigue life predictions of welded joints with different local toe geometry, Fatigue Fract. Eng. Mater. Struct., 26 (2003) 49-58. DOI: 10.1046/j.1460- 2695.2003.00586.x. [9] Lazzarin, P., Sonsino, C.M., Zambardi, R. A notch stress intensity approach to assess the multiaxial fatigue strength of welded tube-to flange joints subjected to combined loadings, Fatigue Fract. Eng. Mater. Struct., 27 (2004) 127- 140. DOI: 10.1111/j.1460-2695.2004.00733.x. [10] Livieri, P., Lazzarin, P., Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values, Int. J. Fracture, 133 (2005) 247-278. DOI: 10.1007/s10704-005-4043-3. [11] Lazzarin, P., Berto F., Some expressions for the strain energy in a finite volume surrounding the root of blunt V- notches. Int. J. Fracture, 135 (2005) 161-185. DOI: 10.1007/s10704-005-3943-6. [12] Lazzarin, P., Berto, F., From Neuber’s elementary volume to Kitagawa and Atzori’s diagrams: an interpretation based on local energy, Int. J. Fracture, 135 (2005) L33-L38. DOI: 10.1007/s10704-005-4393-x. [13] Lazzarin, P., Livieri, P., Berto, F., Zappalorto, M., Local strain energy density and fatigue strength of welded joints under uniaxial and multiaxial loading, Eng. Fract. Mech., 75 (2008) 1875-1889. DOI: 10.1016/j.engfracmech.2006.10.019. [14] Lazzarin, P., Berto, F., Control volumes and strain energy density under small and large scale yielding due to tensile and torsion loading, Fatigue Fract. Eng. Mater. Struct., 31 (2008) 95-107. DOI: 10.1111/j.1460-2695.2007.01206.x. [15] Neuber, H., Kerbspannungslehre, 2nd edn, Springer-Verlag, Berlin, (1958). [16] Neuber, H., Űber die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen. Konstruktion, 20 (1968) 245-251. [17] Neuber, H., Kerbspannungslehre, 3rd edn, Springer-Verlag, Berlin, (1985). [18] McClintock, F.A., Ductile fracture instability in shear, J. Appl. Mech., 25 (1958) 582-588. [19] Ritchie, R.O., Knott., J., Rice, J.R., On the relation between critical tensile stress in fracture toughness in mild steel, J. Mech. Phys. Sol., 21 (1973) 395-410. DOI: 10.1016/0022-5096(73)90008-2. [20] Knésl , Z., A criterion of V-notch stability, Int. J. Fracture, 48 (1991) R79-R83. DOI: 10.1007/BF00012922. [21] Seweryn, A., Brittle fracture criterion for structures with sharp notches, Eng. Fract. Mech., 47(1994) 673-681. DOI: 10.1016/0013-7944(94)90158-9. [22] Novozhilov, V.V., On necessary and sufficient criterion of brittle fracture. Prikladnaja Matematika i Mechanika, 33 (1969) 212-222. [23] Seweryn, A., Mróz, Z, A non-local stress failure condition for structural elements under multiaxial loading. Eng. Fract. Mech., 51(1995) 955-973. DOI: 10.1016/0013-7944(94)00335-F. [24] Seweryn, A. Poskrobko, S., Mróz, Z, Brittle fracture in plane elements with sharp notches under mixed-mode loading. J. Eng. Mech., 123 (1997) 535-543. DOI: 10.1061/(ASCE)0733-9399(1997)123:6(535). [25] Sheppard, S.D., Field effects in fatigue crack initiation: long life fatigue strength. Trans. ASME. J. Mech. Des., 113 (1991) 188-194. Doi:10.1115/1.2912768. [26] Beltrami, E., Sulle condizioni di resistenza dei corpi elastici, Rend. R. Ist. Lombardo di Scienze, Lettere e Arti, 18 (1885) 704 (in Italian). Doi: 10.1007/BF02824697.

RkJQdWJsaXNoZXIy MjM0NDE=