Issue34

S. Henschel et alii, Frattura ed Integrità Strutturale, 34 (2015) 326-333; DOI: 10.3221/IGF-ESIS.34.35 332  Crack path deflection was not considered as a toughness increasing mechanism in the present material. The additionally formed fracture surface due to the crack path deflection did not compensate the detrimental effect of the inclusions regarding toughness.  The slightly lower crack growth resistance during dynamic tests was attributed to a larger amount of flat-dimpled regions. However, the increase in loading rate by five orders of magnitude did not result in brittle fracture. A CKNOWLEDGEMENTS he authors thank the German Research Foundation (DFG) for its financial support of the investigations at the Collaborative Research Center 920, subproject C05. The support of Georg Maiberg and Sascha Graf was greatly appreciated. R EFERENCES [1] Leslie, W. C., Inclusions and mechanical properties, Trans. Iron Steel Soc. AIME, 2 (1983) 1–24. [2] Garrison, W. M., Jr., Moody, N. R., Ductile fracture, J. Phys. Chem. Solids, 48(11) (1987) 1035–1074. DOI: 10.1016/0022-3697(87)90118-1. [3] Braun, T. B., Elliott, J. F., Flemings, M. C., The clustering of alumina inclusions, Met. Trans. B, 10(2) (1979) 171–184. DOI: 10.1007/BF02652461. [4] Thomson, R. D., Hancock, J. W., Ductile failure by void nucleation, growth and coalescence, Int. J. Fract., 26(2) (1984) 99–112. DOI: 10.1007/BF01157547. [5] Beremin, F. M., Cavity formation from inclusions in ductile fracture of A508 steel, Met. Trans. A, 12 (1981) 5, 723– 731. DOI: 10.1007/BF02648336. [6] Cox, T. B., Low, J. R., Jr., An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels, Met. Trans., 5 (1974) 1457–1470. DOI: 10.1007/BF02646633. [7] Hancock, J. W., Mackenzie, A. C., On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states, J. Mech. Phys. Solids, 24(2–3) (1976) 147–160. DOI: 10.1016/0022-5096(76)90024-7. [8] Thomason, P. F., Ductile fracture by the growth and coalescence of microvoids of non-uniform size and spacing, Acta Metall. Mater., 41(7) (1993) 2127–2134. DOI: 10.1016/0956-7151(93)90382-3. [9] Bourcier, R. J., Koss, D. A., Smelser, R. E., Richmond, O., The influence of porosity on the deformation and fracture of alloys, Acta Metall., 34(12) (1986) 2443–2453. DOI: 10.1016/0001-6160(86)90147-1. [10] Krabiell, A., Dahl, W., Zum Einfluß von Temperatur und Beanspruchungsgeschwindigkeit auf die Rißzähigkeit von Baustählen mit unterschiedlicher Festigkeit, Arch. Eisenhüttenwes., 53(6) (1982) 225–230. [11] Thomason, P. F., Ductile fracture of metals. Oxford: Pergamon Press (1990). [12] Yamamoto, H., Conditions for shear localization in the ductile fracture of void-containing materials, Int. J. Fract., 14(4) (1978) 347–365. DOI: 10.1007/BF00015989. [13] Zehnder, A. T., Rosakis, A. J., On the temperature distribution at the vicinity of dynamically propagating cracks in 4340 steel, J. Mech. Phys. Solids, 39(3) (1991) 385–415. DOI: 10.1016/0022-5096(91)90019-K. [14] Emmel, M., Aneziris, C. G., Schmidt, G., Krewerth, D., Biermann, H., Influence of the chemistry of surface functionalized ceramic foam filters on the filtration of alumina inclusions in steel melts, Adv. Eng. Mater., 15(12) (2013) 1188–1196. DOI: 10.1002/adem.201300118. [15] Henschel, S., Krewerth, D., Ballani, F., Weidner, A., Krüger, L., Biermann, H., Emmel, M., Aneziris, C. G., Effect of filter coating on the quasi-static and cyclic mechanical properties of a G42CrMo4 casting, Adv. Eng. Mater., 15(12) (2013) 1216–1223. DOI: 10.1002/adem.201300125. [16] ISO 12135, 2002: Metallic materials – Unified method of test for the determination of quasistatic fracture toughness. [17] Weidner, A., Mottitschka, T., Biermann, H., Henkel, S., Determination of stretch zone width and height by powerful 3D SEM imaging technology, Eng. Fract. Mech., 108 (2013) 294–304. DOI: 10.1016/j.engfracmech.2013.03.021. [18] Kußmaul, K., Klenk, A., Link, T., Schüle, M., Dynamic material properties and their application to components, Nucl. Eng. Des., 174 (1997) 3, 219–235. DOI: 10.1016/S0029-5493(97)00134-9. [19] Odeshi, A. G., Al-ameeri, S., Bassim, M. N., Effect of high strain rate on plastic deformation of a low alloy steel subjected to ballistic impact, J. Mater. Process. Tech., 162–163 (2005), 385–391. DOI: 10.1016/j.jmatprotec.2005.02.157. T

RkJQdWJsaXNoZXIy MjM0NDE=