Issue34

G. Lesiuk et alii, Frattura ed Integrità Strutturale, 34 (2015) 290-299; DOI: 10.3221/IGF-ESIS.34.31 299 [6] Lesiuk, G., Szata, M., Fatigue properties and fatigue crack growth in puddled steel with consideration of microstructural degradation processes after 100-years operating time, XVII International Colloquium on Mechanical Fatigue of Metals (ICMFM17), Procedia Engineering, 74 (2014) 64–67. DOI:10.1016/j.proeng.2014.06.225. [7] Ostash, O.P., Panasyuk, V.V., Andreiko, I.M., Chepil’, R.V., Kulyk, V.V., Vira, V.V., Methods for the construction of the diagrams of fatigue crack-growth rate of materials, Materials Science, 43(4) (2007). [8] Szata, M., Modeling of fatigue crack growth using energy method, Publishing House of Wroclaw University of Technology, Poland, Wroclaw, (2002), in Polish. [9] Pandey, K. N., Chand, S., Fatigue crack growth model for constant amplitude loading, Fatigue Fracture Eng. Mat. Structures, 27 (2004) 459-472. [10] Hutchinson, J.W., Singular behaviour at the end of a tensile crack in a hardening material. J. Mech. Phys. Solids, 16 (1968) 13–31. [11] Izumi, Y., Fine, M. E., Mura, T., Energy consideration in fatigue crack propagation. Int. J. Fract. 17 (1981) 15–25. [12] Ellyin, F., Fatigue damage, crack growth and life prediction, Chapman & Hall, (1997).

RkJQdWJsaXNoZXIy MjM0NDE=