Issue34

M. Ševčík et al, Frattura ed Integrità Strutturale, 34 (2015) 216-225; DOI: 10.3221/IGF-ESIS.34.23 225 [2] Soutis, C., Introduction: Engineering requirements for aerospace composite materials. In: Irving PE, Soutis C, editors. Polymer Composites in the Aerospace Industry, Woodhead Publishing, (2015) 1-18. [3] Kachanov, L.M., Delamination Buckling. Delamination Buckling of Composite Materials, Springer Netherlands, (1988) 19-56. [4] Rice, J.R., Elastic Fracture Mechanics Concepts for Interfacial Cracks. J Appl Mech, 55 (1988) 98-103. DOI:10.1115/1.3173668. [5] D30 Committee. Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites. ASTM International, (2013). [6] Williams, J.G., On the calculation of energy release rates for cracked laminates. International Journal of Fracture, 36 (1988) 101-19. DOI:10.1007/BF00017790. [7] Kinloch, A.J., Wang, Y., Williams. J.G., Yayla, P., The mixed-mode delamination of fibre composite materials. Composites Science and Technology, 47 (1993) 225-37. DOI:10.1016/0266-3538(93)90031-B. [8] Ducept, F., Davies, P., Gamby, D., An experimental study to validate tests used to determine mixed mode failure criteria of glass/epoxy composites. Composites Part A: Applied Science and Manufacturing, 28 (1997) 719-729. DOI:10.1016/S1359-835X(97)00012-2. [9] Hutchinson, J.W., Suo, Z., Mixed Mode Cracking in Layered Materials, In: John W. Hutchinson and Theodore Y. Wu, editor. Advances in Applied Mechanics, 29 (1991) 63-191. [10]Shahverdi, M., Vassilopoulos, A.P., Keller, T., A phenomenological analysis of Mode I fracture of adhesively-bonded pultruded GFRP joints. Engineering Fracture Mechanics, 78 (2011) 2161-2173. DOI:10.1016/j.engfracmech.2011.04.007 [11]Bennati, S., Fisicaro, P., Valvo, P.S., An enhanced beam-theory model of the mixed-mode bending (MMB) test—Part I: Literature review and mechanical model. Meccanica, 48 (2013) 443-462. DOI:10.1007/s11012-012-9686-3. [12]Bennati, S., Fisicaro, P., Valvo, P.S., An enhanced beam-theory model of the mixed-mode bending (MMB) test—Part II: Applications and results. Meccanica, 48 (2013) 465-484. DOI:10.1007/s11012-012-9682-7. [13]Rybicki, E.F., Kanninen, M.F., A finite element calculation of stress intensity factors by a modified crack closure integral, Engineering Fracture Mechanics, 9 (1977) 931-938. DOI:10.1016/0013-7944(77)90013-3. [14]Shahverdi, M., Vassilopoulos, A.P., Keller, T., Mixed-mode fatigue failure criteria for adhesively-bonded pultruded GFRP joints. Composites Part A: Applied Science and Manufacturing, 54 (2013) 46-55. DOI:10.1016/j.compositesa.2013.06.017. [15]ASTM D3171-11. Test Methods for Constituent Content of Composite Materials. ASTM International, (2011). [16]De Castro, J., Keller, T., Ductile double-lap joints from brittle GFRP laminates and ductile adhesives, Part I: Experimental investigation, Composites Part B: Engineering, 39 (2008) 271-281. DOI:10.1016/j.compositesb.2007.02.015. [17]Shahverdi, M., Vassilopoulos, A.P., Keller, T., Modeling effects of asymmetry and fiber bridging on Mode I fracture behavior of bonded pultruded composite joints, Engineering Fracture Mechanics, 99 (2013) 335-48. DOI:10.1016/j.engfracmech.2013.02.001. [18]Crews, Jr. J.H., Reeder, J.R., A Mixed-Mode Bending Apparatus For Delamination Testing, NASA TECHNICAL MEMORANDUM 100662. (1988). [19]Reeder, J.R., Crews, Jr. J.H., Redesign of the mixed-mode bending delamination test to reduce nonlinear effects, Journal of Composites Technology and Research, 14 (1992) 12-9. [20]Zhang, Y., Vassilopoulos, A.P., Keller, T., Mode I and II fracture behavior of adhesively-bonded pultruded composite joints, Engineering Fracture Mechanics, 77 (2010) 128-43. DOI:10.1016/j.engfracmech.2009.09.015. [21]Shahverdi, M., Vassilopoulos, A.P., Keller, T., Mixed-Mode I/II fracture behavior of asymmetric adhesively-bonded pultruded composite joints, Engineering Fracture Mechanics, 115 (2014) 43-59. DOI:10.1016/j.engfracmech.2013.11.014.

RkJQdWJsaXNoZXIy MjM0NDE=