Issue34

P.O. Judt et alii, Frattura ed Integrità Strutturale, 34 (2015) 208-215; DOI: 10.3221/IGF-ESIS.34.22 215 [2] Cherepanov, G.P., Crack propagation in continuous media (translation from russian). J. Appl. Math. Mech., 31 (1967) 503-512. [3] Rice, J.R., A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech., 35 (1968) 379-386. [4] Günther, W., Über einige Randintegrale der Elastomechanik. Abh. Braunschweigischen Wissen. Gesell., 14 (1962) 53- 72. [5] Knowles, J.K., Sternberg, E., On a class of conservation laws in linearized and finite elastostatics. Arch. Rational Mech. Ana., 44 (1972) 187-211. [6] Budiansky, B., Rice, J.R., Conservation laws and energy-release rates. J. Appl. Mech., 40 (1973) 201-203. [7] Kienzler, R., Herrmann, G., Mechanics in material space with applications to defect and fracture mechanics. Springer, Berlin, 2000. [8] Bergez, D., Determination of stress intensity factors by use of path-independent integrals. Mech. Res. Commun., 1 (1974) 179-180. [9] Eischen, J.W., An improved method for computing the J 2 integral. Eng. Fract. Mech., 26 (1987) 691-700. [10] Judt, P.O., Ricoeur A., Accurate loading analyses of curved cracks under mixed-mode conditions applying the J - integral. Int. J. Fract., 182 (2013) 53-66. [11] Stern, M., Becker, E.B., Dunham, R.S., A contour integral computation of mixed-mode stress intensity factors. Int. J. Fract., 12 (1976) 359-368. [12] Judt, P.O., Ricoeur, A., Consistent application of path-independent interaction integrals to arbitrary curved crack faces. Arch. Appl. Mech., 85 (2015) 13-27. [13] Judt, P.O., Ricoeur, A., Crack growth simulation of multiple cracks systems applying remote contour interaction integrals. Theo. App. Fract. Mech., 75 (2015) 78-88. [14] Judt, P.O., Ricoeur, A., A new application of M - and L -integrals for the numerical loading analysis of two interacting cracks. Z. Angew. Math. Mech., (2015). doi: 10.1002/zamm201500012. [15] Sih, G.C., Paris, P.C., Irwin, G.R., On cracks in rectilinearly anisotropic bodies. Int. J. Fract. Mech., 1 (1965) 189-203. [16] Judt, P.O., Ricoeur, A., Linek, G., Crack path prediction in rolled aluminum plates with orthotropic properties and experimental validation. Engineering Fracture Mechanics, 138 (2015) 33-48. [17] Eischen, J.W., Herrmann G., Energy release rates and related balance laws in linear elastic defect mechanics. J. Appl. Mech., 54 (1987) 388-392. [18] Yu, H., Wu, L., Guo, L., Du, S., He, Q., Investigation of mixed-mode stress intensity factors for nonhomogeneous materials using an interaction integral method. Int. J. Solids Struct., 46 (2009) 3710-3724. [19] Judt, P.O., Ricoeur, A., Crack growth in elastic materials with internal boundaries and interfaces. In Proceedings in Applied Mathematics and Mechanics 12 (2012) 159-160, GAMM Tagung, Darmstadt, Germany. [20] Patton, E.M., Santare, M.H., Crack path prediction near an elliptical inclusion. Engineering Fracture Mechanics, 44 (1993) 195-205. [21] Bouchard, P.O., Bay, F., Chastel, Y., Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria. Comput. Meth. Appl. Mech. Eng., 192 (2003) 3887-3908. [22] Nielsen, C.V., Legarth, B.N., Niordson C.F., Extended FEM modeling of crack paths near inclusions. Int. J. Numer. Meth. Eng., 89 (2012) 786-804. [23] Braun, M., Configurational forces induced by finite-element discretization. Proc. Estonian Acad. Sci. Phys. Math., 46 (1997) 24-31. [24] Gross, D., Mueller, R., Kolling, S., Configurational forces - morphology evolution and finite elements. Mech. Res. Commun., 29 (2002) 529-536.

RkJQdWJsaXNoZXIy MjM0NDE=