Issue34

L. Náhlík et alii, Frattura ed Integrità Strutturale, 34 (2015) 116-124; DOI: 10.3221/IGF-ESIS.34.12 123 R EFERENCES [1] Kolednik, A., Predan, J., Gubeljak, N., Fischer, D.F., Modeling fatigue crack growth in a bimaterial specimen with the configurational forces concept, Mat. Sci. Eng. A, 519 (2009) 172–183. DOI: 10.1016/j.msea.2009.04.059. [2] Marsavina, L., Sadowski, T., Knec, M., Crack propagation paths in four point bend Aluminium–PMMA Specimens, Eng. Frac. Mech., 108 (2013) 139-151. DOI: 10.1016/j.engfracmech.2013.02.029. [3] Leguillon, D., Martin, E., The strengthening effect caused by an elastic contrast—part I: the bimaterial case, Int. J. Fract., 179 (2013) 157–167. DOI: 10.1007/s10704-012-9787-y. [4] He, M.Y., Hutchinson, J.W., Crack deflection at an interface between dissimilar elastic materials, Int. J. Solids Struct., 25 (1989) 1053–1067. [5] He, M.Y., Evans, A.G., Hutchinson, J.W., Crack deflection at an interface between dissimilar elastic materials: Role of residual stresses, Int. J. Solids Struct., 31 (1994) 3443-3455. DOI: 10.1016/0020-7683(94)90025-6. [6] Sistaninia, M., Kolednik, O., Effect of a single soft interlayer on the crack driving force, Eng. Frac. Mech., 130 (2014) 21–41. DOI: 10.1016/j.engfracmech.2014.02.026. [7] Knésl, Z., Náhlík, L., Radon, J., Influence of interface on fatigue threshold values in elastic biomaterials, Comp. Mater. Sci., 28 (2003) 620–627. DOI:10.1016/j.commatsci.2003.08.018. [8] Wang, B., Siegmund, T., Simulation of fatigue crack growth at plastically mismatched bi-material interfaces, Int. J. Plasticity, 22 (2006) 1586-1609. DOI: 10.1016/j.ijplas.2005.09.004. [9] Minatto, F.D., Milak, P., De Noni Jr., A., Hotza, D., Montedo, O. R. K., Multilayered ceramic composites – a review, Adv. Appl. Ceram., 114 (2015) 127-138. DOI: 10.1179/1743676114Y.0000000215. [10] Šestáková, L., Bermejo, R., Chlup, Z., Danzer, R., Strategies for fracture toughness, strength and reliability optimisation of ceramic–ceramic laminates, Int. J. Mat. Res., 102 (2011) 1-14. DOI: 10.3139/146.110523. [11] Bermejo, R., Chlup, Z., Šestáková, L., Ševeček, O., Danzer, R., Strategies to optimize the strength and fracture resistence of ceramic laminate, Mechanical Properties and Performance of Engineering Ceramics and Composites VII: Ceramic Engineering and Science Proceedings, 33 (2012) 163-174. [12] She, J., Inoue, T., Ueno, K., Multilayer Al 2 O 3 /SiC ceramics with improved mechanical behaviour, J. Eur. Ceram. Soc., 20 (2000) 1771-1775. DOI:10.1016/S0955-2219(00)00048-0. [13] Hadraba, H., Drdlík, D., Chlup, Z., Máca, K., Dlouhý, I., Cihlář, J., Layered ceramic composites via control of electrophoretic deposition kinetics, J. Eur. Ceram. Soc., 33 (2013) 2305–2312. DOI:10.1016/j.jeurceramsoc.2013.01.026. [14] Hadraba, H., Klimeš, J., Maca, K., Crack propagation in layered Al2O3/ZrO2 composites prepared by electrophoretic deposition, J. Mater. Sci., 42 (2007) 6404–6411. DOI: 10.1007/s10853-006-1197-y. [15] Oechsner, M., Hillman, C., Lange, F. F., Crack bifurcation in laminar ceramic composites, J. Am. Ceram. Soc., 79 (1996) 1834-1838. [16] Lugovy, M., Slyunyayev, V., Orlovskaya, N., Blugan, G., Kuebler, J., Lewis, M., Apparent fracture toughness of Si3N4-based laminates with residual compressive or tensile stresses in surface layers, Acta Mater., 53 (2005) 289–296. DOI:10.1016/j.actamat.2004.09.022. [17] Wei, P., Chen, L., Okubo, A., Hirai, T., Tough multilayered α–β SI 3 N 4 ceramics prepared by spark plasma sintering, Mater. Lett., 49 (2001) 239–243. DOI: 10.1016/S0167-577X(00)00377-3. [18] Tomaszewski, H., Weglarz,H., Wajler, A., Boniecki, M., Kalinski, D., Multilayer ceramic composites with high failure resistence, J. Eur. Ceram. Soc., 27 (2007) 1373–1377. DOI:10.1016/j.jeurceramsoc.2006.04.030. [19] Chlup, Z., Hadraba, H., Slabáková, L., Drdlík, D., Dlouhý, I., Fracture behaviour of alumina and zirconia thin layered laminate, J. Eur. Ceram. Soc., 32 (2012) 2057–2061. DOI:10.1016/j.jeurceramsoc.2011.09.006. [20] Bermejo, R., Danzer, R., High failure resistance layered ceramics using crack bifurcation and interface delamination as reinforcement mechanisms, Eng. Frac. Mech., 77 (2010) 2126–2135. DOI: 10.1016/j.engfracmech.2010.02.020. [21] Bermejo, R., Llanes, L., Anglada, M., Supancic, P., Lube, T., Thermal Shock Behavior of an Al 2 O 3 /ZrO 2 Multilayered Ceramic with Residual Stresses due to Phase Transformation, Key Engineering Materials, 290 (2005) 191-198. DOI: 10.4028 /www.scientific.net/KEM.290.191. [22] Bermejo, R., Torres, Y., Baudín, C., Sánchez-Herencia, A.J., Pascual, J., Anglada, M., Llanes, L., Threshold strength evaluation on an Al2O3-ZrO 2 multilayered system, J. Eur. Ceram. Soc., 27 (2007) 1443–1448. DOI:10.1016/j.jeurceramsoc.2006.05.037. [23] Bermejo, R., Baudín, C., Moreno, R., Llanes, L., Sánchez-Herencia, A.J., Processing optimisation and fracture behaviour of layered ceramic composites with highly compressive layers, Compos.Sci. Technol., 67 (2007) 1930–1938. DOI:10.1016/j.compscitech.2006.10.010.

RkJQdWJsaXNoZXIy MjM0NDE=