Issue 31
J. Lopes et alii, Frattura ed Integrità Strutturale, 31 (2015) 67-79; DOI: 10.3221/IGF-ESIS.31.06 78 [2] Fink, A., Kolesnikov, B., Hybrid titanium composite material improving composite structure coupling, In: Spacecraft Structures, Materials and Mechanical Testing 2005, 581 (2005) 135. [3] Kolesnikov, B., Herbeck, L., Fink, A., CFRP/titanium hybrid material for improving composite bolted joints, Compos. Struct., 83(4) (2008) 368–380. [4] Camanho, P.P., Fink, A., Obst, A., Pimenta, S.,Hybrid titanium–CFRP laminates for high-performance bolted joints, Compos. Part Appl. Sci. Manuf., 40(12) (2009) 1826–1837. [5] Fink, A., Camanho, P. P., Andrés, J. M., Pfeiffer, E., Obst, A., Hybrid CFRP/titanium bolted joints: Performance assessment and application to a spacecraft payload adaptor, Compos. Sci. Technol., 70(2) (2010) 305–317. [6] Fink, A., Camanho, P., Reinforcement of composite bolted Joints by means of local metal hybridization,Composite joints and connections, Pedro Camanho and Liyong Tong, Eds. Woodhead Publ., (2011). [7] Stefaniak, D., Kappel, E., Kolotylo, M., Huhne, C., Experimental identification of sources and mechanisms inducing residual stresses in multi layered fiber-metal laminates, In: Euro-Hybrid 2014, PFH – Private University of Applied Sciences, Stade, Germany, (2014). [8] Kim, H. S., Park, S. W., Hwang, H. Y., Lee, D. G., Effect of the smart cure cycle on the performance of the co-cured aluminum/composite hybrid shaft, In: Thirteen. Int. Conf. Compos. Struct. Iccs13, 75(1–4) (2006) 276–288. [9] Lamineries Matthey SA. Stahl 1.4310. [10] De Freitas, M., Reis, L., Li, B., Comparative study on biaxial low-cycle fatigue behaviour of three structural steels, Fatigue Fract. Eng. Mater. Struct., 29(12) (2006) 992–999. [11] Marlett, K., Hexcel 8552 IM7 Unidirectional Prepreg 190 gsm & 35%RC Qualification Material Property Data Report, FAA, FAA Special Project Number SP4614WI-Q, (2011). [12] EN 14130 Fibre-reinforced plastic composites Determination of apparent interlaminar shear strength by short-beam method, (1998). [13] Mazza, J.J., Sol-Gel Technology for Low-VOC, Nonchromated Adhesive Bonding Applications SERDP; Project PP- 1113, Task 1. Storming Media, (2004). [14] Rider, A., Williams, I., Shum, E., Mirabella, L., Environmental durability trial of bonded composite repairs to metallic aircraft structure, DTIC Document, (2005). [15] Covino, B. S., Scalera, J. V., Fabis, P. M., U. S. B. of Mines, Pickling of stainless steels–a review. United States Dept. of the Interior, Bureau of Mines, (1984). [16] Stefaniak, D., Kappel, E., Kolesnikov, B., Hühne, C., Improving the mechanical performance of unidirectional CFRP by metal-hybridization, In: ECCM15 - 15th European Conference on Composite Materials, Venice, Italy, (2012). [17] Narváez, L., Cano, E., Bastidas, J. M., Effect of ferric ions in AISI 316L stainless steel pickling using an environmentally-friendly H 2 SO 4 -HF-H 2 O 2 mixture, Mater. Corros., 54(2) (2003) 84–87. [18] Rybicki, E. F., Kanninen, M. F., A finite element calculation of stress intensity factors by a modified crack closure integral, Eng. Fract. Mech., 9(4) (1977) 931–938. [19] Krueger, R., The Virtual Crack Closure Technique: History, Approach and Applications, NASA, NASA/CR-2002- 211628 ICASE Report No. 2002-10, (2002). [20] Marat-Mendes, R., Critérios de delaminação em materiais compósitos sob solicitações multiaxiais, PhD Thesis in Mechanical Engineering, Universidade Técnica de Lisboa - Instituto Superior Técnico, Lisboa, (2009). [21] Marat-Mendes, R. M., Freitas, M. M., Failure criteria for mixed mode delamination in glass fibre epoxy composites, Compos. Struct., 92(9) (2010) 2292–2298. [22] Whitcomb, J. D., Analysis of instability-related growth of a through-width delamination, National Aeronautics and Space Administration, Langley Research Center, Technical Report NASA-TM-86301, NAS 1.15:86301, (1984). [23] Benzeggagh, M. L., Kenane, M., Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus, Compos. Sci. Technol., 56(4) (1996) 439–449. [24] Reeder, J. R., 3D mixed-mode delamination fracture criteria–an experimentalist’s perspective, In: American Society for Composites 21st Annual Technical Conference, Dearborn, MI; United States, (2006). [25] Camanho, P. P., Dávila, C. G., Mixed-mode decohesion finite elements for the simulation of delamination in composite materials, Nasa-Tech. Pap., 211737(1) (2002) 33. [26] Camanho, P. P., Davila, C. G., De Moura, M. F., Numerical simulation of mixed-mode progressive delamination in composite materials, J. Compos. Mater., 37(16) (2003) 1415–1438. [27] Ankersen, J., Davies, G. A. O., Interface elements-advantages and limitations in CFRP delamination modelling, In: 17th International Conference on Composite Materials, Edinburgh, UK, (2009). [28] Turon, A., Davila, C. G., Camanho, P. P., Costa, J., An Engineering Solution for Solving Mesh Size Effects in the Simulation of Delamination with Cohesive Zone Models, (2007).
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=