Issue 31

H.F.S.G. Pereira et alii, Frattura ed Integrità Strutturale, 31 (2015) 54-66; DOI: 10.3221/IGF-ESIS.31.05 65 [2] Considère, M., Influence des armatures métalliques sur les proprietes des mortiers e bétons, Le Béton Armé, 10 (1899). [3] Talbot, A. N., Tests of concrete I. Shear II. Bond, University of Illinois Bulletin, IV (1906) [4] Webb, R., Wilsey, G. H., Bonding strength of concrete and steel, Armour Institute of Technology, (1908). [5] Emin, G. H., Laskey, H., Tobias, W. R., Bond stress of lap reinforced concrete beams, Armour Institute of Technology, (1911). [6] Abrams, D. A., Test of bond between concrete and steel, University of Illinois Bulletin, XI (1913). [7] Rehm, G., The fundamental law of bond, In: Proceeding of the Symposium on bond and Crack Formation in Reinforced Concrete, Stockholm; RELIM, Paris, (1957). [8] Rehm, G., The basic principle of bond between steel and concrete, Deustcher Ausschuss fur Stalbeton; Wilhelm Ernest and Sohn, Berlin, 138 (1961) [9] Goto, Y., Cracks formed in concrete around tension bars, ACI Journal, 68(4) (1971) 244-251. [10] Tassios, T.P., Properties of bond between concrete and steel under load cycles idealizing sismic actions, Comité Euro- international Du Béton, Paris, 131 (1979). [11] Tepfers, R., Cracking of concrete cover along anchored deformed reinforcing bars, Magazine of Concrete Research, 31(106) (1979) 3-11. [12] Stanton, J. F., McNiven, H. D., The development of a mathematical model to predict the flexural response of reinforced concrete beams to cyclic loads, EERC report, University of California, Berkeley, 79-2 (1979). [13] Ciampi, V., Eligehausen, R., Bertero, V. V., Popov, E.P., Analytical model for concrete anchorages of reinforcing bars under generalized excitations, Earthquake Eng. Res. Center, University of California, Berkeley, 82/23 (1982) 121. [14] Hawkins, N. M., Lin I.J., F.L. Jeang, Local bond strength of concrete for cyclic reversed loadings, Bond in Concrete, P. Bartos (editor), Applied Science Publishers Ltd., London, (1982) 151-161. [15] Eligehausen, R., Popov, E.P., Bertero, V.V., Local bond stress-slip relationships of deformed bars under generalized excitation, University of California; National Science Foundation, UCB/EERC-83/23 (1983). [16] Darwin, D., Development length criteria for conventional and high relative rib area reinforcing bars, ACI Structural Journal, Farmington Hills, 93(3) (1992) 709-720. [17] Gambarova, P.G., Rosati, G.P., Bond and splitting in bar pull-out: behavioural laws and concrete cover role, Magazine de Concrete Research, 49(179) (1997) 99-110. [18] Sener, S., Bazant, Z.P., Becq-Giraudon, E., Size effect on failure of bond splices of steel bars in concrete beams, ASCE – Journal of Structural Engineering, 125(6) (1999) 653-660. [19] Kayali, O., Yeomans, S. R., Bond of ribbed galvanized reinforcing steel in concrete, Cement & Concrete Composites 22 (2000) 459-467. [20] Li, C. Y., Finite Element Simulations of fiber pullout toughening in fiber reinforced cement based composites, Advanced Cement Based Materials, 7 (1998) 123-132. [21] Lettow, S., The simulation of bond between concrete and reinforcement in nonlinear three-dimensional finite element analysis, In: 5th International PhD Symposium in Civil Engineering, Delft, The Netherlands, (2004). [22] Torres, L., Baena, M., Turon, A., Cahís, X., Barris, C., Simulation of bond behaviour between fiber reinforced polymer bars and concrete, In: 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures, Patras, Greece, (2007). [23] Shafaie, J., Hosseini, A., Marefat, M. S., 3D finite element modelling of bond-slip between rebar and concrete in pull- out test, In: 3rd International Conference on Concrete & Development, Iran, (2009). [24] Lowes, L.N., Finite element modelling of reinforced concrete beam-column bridge connections, Ph. D. Thesis, Civil Engineering Division, University of California, Berkeley, USA, (1999). [25] Bond of reinforcement in concrete-state of the art report, Fib-Bulletin, Lausanne, 102000. [26] ABAQUS version 6.11 User’s manual. RI: Hibbitt, Karlsson & Sorensen Inc, (2011). [27] Fédération internationale du béton / International Federation for Structural Concrete (fib), “FIP model code for concrete structures 2010”, Paul Beverly, Lausanne, Switzerland, (2013). [28] Alfano, G., Marfia, S., Sacco, E., A cohesive damage-friction interface model accounting for water pressure on crack propagation, Computer methods in applied mechanics and engineering, 196 (2006) 192-209. [29] Serperi, R., Alfano, G., Bond-slip analysis via a thermodynamically consistent interface model combining interlocking, damage and friction, Int. J. Numer. Meth. Engng, 85 (2011) 164-186. [30] Lubliner, J., Oliver, J., Oller, S., Oñate, E., A plastic-damage model for concrete, J. Solid structures, 25 (1989) 299- 326.

RkJQdWJsaXNoZXIy MjM0NDE=