Issue 31

M. Merlin et alii, Frattura ed Integrità Strutturale, 31 (2015) 127-137; DOI: 10.3221/IGF-ESIS.31.10 137 [31] Jonnalagadda, K., Kline, G.E., Sottos, N.R., Local displacements and load transfer in shape memory alloy composites, Exp. Mech., 37 (1997) 78-86. [32] Paine, J.S.N., Jones, W.M., Rogers, C.A., Nitinol actuator to host composite interfacial adhesion in adaptive hybrid composites, in: Proceedings of 33rd Structures, Structural Dynamics and Materials Conference, Dallas, (1992) 556- 565. [33] Ju, X., Dong, H., Plasma surface modification of NiTi shape memory alloy, Surf. Coat. Tech., 201 (2006) 1542-1547. [34] Poon, R.W.Y., Yeung, K.W.K., Liu, X.Y., Chu, P.K., Chung, C.Y., Lu, W.W., Cheung, K.M.C., Chan, D., Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys, Biomaterials, 26 (2005) 2265-2272. [35] Neuking, K., Abu-Zarifa, A., Eggeler, G., Surface engineering of shape memory alloy/polymer-composites: improvement of the adhesion between polymers and pseudoelastic shape memory alloys, Mater. Sci. Eng. A, 481-482 (2008) 606-611. [36] Smith, N.A., Antoun, G.G., Ellis, A.B., Crone, W.C., Improved adhesion between nickel-titanium shape memory alloy and a polymer matrix via silane coupling agents, Compos. Part A-Appl. Sci. Manuf. 35 (2004) 1307-1312. [37] Zhou, L.-M., Kim, J.-K., Mai, Y.-W., Interfacial debonding and fibre pull-out stresses. Part II A new model based on the fracture mechanics approach, J. Mater. Sci., 27 (1992) 3155-3166. [38] Zhou, L.-M., Mai, Y.-W., Baillie, C., Interfacial debonding and fiber pull-out stresses. Part V A methodology for evaluation of interfacial properties, J. Mater. Sci., 29 (1994) 5541-5550. [39] Fu, S.-Y., Yue, C.-Y., Hu, X., Mai, Y.W., Analyses of the micromechanics of stress transfer in single-and multi-fibre pull-out tests, Compos. Sci. Technol., 60 (2000) 569-579. [40] Poon, C.K., Zhou, L.M., Jin, W., Shi, S.Q., Interfacial debond of SMA composites, Smart Mater. Struct., 14 (2004) 29- 37. [41] Paine, J.S.N., Rogers, C.A., Characterization of interfacial shear strength between SMA actuators and host composite material in adaptive composite material systems, in: Adaptive Structures and Material Systems ASME, AD-35, New York, (1993) 63-70. [42] Piggott, M.R., Failure processes in the fibre-polymer interphase, Compos. Sci. Technol., 42 (1991) 57-76. [43] Chang, B.-C., Shaw, J.-A., Iadicola, M.A., Thermodynamics of shape memory alloy wire: modeling, experiments, and application, Continuum Mech. Thermodyn., 18 (2006) 83–118. [44] Rossi, S., Deflorian, F., Pegoretti, A., D’Orazio, D., Gialanella, S., Chemical and mechanical treatments to improve the surface properties of shape memory NiTi wires, Surf. Coat. Tech., 202 (2008) 2214-2222. [45] Kinloch, A.J., Adhesion and Adhesives: Science and Technology, Chapman & Hall, London, (1987). [46] Berman, J.B., White, S.R., Theoretical modelling of residual and transformational stresses in SMA composites, Smart Mater. Struct., 5 (1996) 731-743. [47] Poon, C.-K., Lau, K.-T., Zhou, L.-M., Design of pull-out stresses for prestrained SMA wire/polymer hybrid composites, Compos. Part B-Eng., 36 (2005) 25-31.

RkJQdWJsaXNoZXIy MjM0NDE=