Issue 31

J.A.F.O. Correia et alii, Frattura ed Integrità Strutturale, 31 (2015) 80-96; DOI: 10.3221/IGF-ESIS.31.07 95 R EFERENCES [1] Noroozi, A.H., Glinka, G., Lambert, S., A two parameter driving force for fatigue crack growth analysis, International Journal of Fatigue, 27 (2005)1277-1296. [2] Schütz, W., A History of Fatigue, Engineering Fracture Mechanics, 54 (1996) 263-300. [3] Paris, P.C., Gomez, M., Anderson, W.E., A rational analytic theory of fatigue, Trend Engineering, 13 (1961) 9-14. [4] Beden, S.M., Abdullah, S., Ariffin, A.K., Review of Fatigue Crack Propagation Models for Metallic Components, European Journal of Scientific Research, 28 (2009) 364-397. [5] Coffin, L.F., A study of the effects of the cyclic thermal stresses on a ductile metal, Translations of the ASME, 76 (1954) 931-950. [6] Manson, S.S., Behaviour of materials under conditions of thermal stress, NACA TN-2933, National Advisory Committee for Aeronautics, (1954). [7] Morrow, J.D., Cyclic plastic strain energy and fatigue of metals, Int. Friction, Damping and Cyclic Plasticity, ASTM STP 378, (1965) 45-87. [8] Smith, K.N., Watson, P., Topper, T.H., A Stress-Strain Function for the Fatigue of Metals, Journal of Materials, 5(4) (1970) 767-778. [9] Shang, D.-G., Wang, D.-K., Li, M., Yao, W.-X., Local stress–strain field intensity approach to fatigue life prediction under random cyclic loading, International Journal of Fatigue, 23 (2001) 903–910. [10] Noroozi, A.H., Glinka, G., Lambert, S., A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force, International Journal of Fatigue, 29 (2007) 1616-1633. [11] Noroozi, A.H., Glinka, G., Lambert, S., Prediction of fatigue crack growth under constant amplitude loading and a single overload based on elasto-plastic crack tip stresses and strains, Engineering Fracture Mechanics, 75 (2008) 188- 206. [12] Peeker, E., Niemi, E., Fatigue crack propagation model based on a local strain approach, Journal of Constructional Steel Research, 49 (1999) 139–155. [13] Glinka, G., A notch stress-strain analysis approach to fatigue crack growth, Engineering Fracture Mechanics, 21 (1985) 245-261. [14] Hurley, P.J., Evans, W.J., A methodology for predicting fatigue crack propagation rates in titanium based on damage accumulation, Scripta Materialia, 56 (2007) 681–684. [15] Neuber, H., Theory of stress concentration for shear-strained prismatic bodies with arbitrary nonlinear stress–strain law, Trans. ASME Journal of Applied Mechanics, 28 (1961) 544–551. [16] Moftakhar, A., Buczynski, A., Glinka, G., Calculation of elasto-plastic strains and stresses in notches under multiaxial loading, International Journal of Fracture, 70 (1995) 357-373. [17] Reinhard, W., Moftakhar, A., Glinka, G., An Efficient Method for Calculating Multiaxial Elasto-Plastic Notch Tip Strains and Stresses under Proportional Loading, Fatigue and Fracture Mechanics, ASTM STP 1296, R.S. Piascik, J.C. Newman, N.E. Dowling, Eds., American Society for Testing and Materials, 27 (1997) 613-629. [18] Mikheevskiy, S., Glinka, G., Elastic–plastic fatigue crack growth analysis under variable amplitude loading spectra,” International Journal of Fatigue, 31 (2009) 1828–1836. [19] De Jesus, A.M.P., Matos, R., Fontoura, B.F.C., Rebelo, C., Simões da Silva, L., Veljkovic, M., A comparison of the fatigue behavior between S355 and S690 steel grades, Journal of Constructional Steel Research, 79 (2012) 140–150. [20] Castillo, E., Fernández-Canteli, A., A Unified Statistical Methodology for Modeling Fatigue Damage, Springer, (2009). [21] Basquin, O.H., The exponential law of endurance tests, In: Proc. Annual Meeting, American Society for Testing Materials, 10 (1910) 625-630. [22] Creager, M., Paris, P.C., Elastic field equations for blunt cracks with reference to stress corrosion cracking, International Journal of Fracture Mechanics, 3 (1967) 247–252. [23] Molski, K., Glinka, G., A method of elastic-plastic stress and strain calculation at a notch root, Materials Science and Engineering, 50 (1981) 93-100. [24] Glinka, G., Development of weight functions and computer integration procedures for calculating stress intensity factors around cracks subjected to complex stress fields, Progress Report No.1: Stress and Fatigue-Fracture Design, Petersburg Ontario, Canada, (1996). [25] Sadananda, K., Vasudevan, A.K., Kang, I.W., Effect of Superimposed Monotonic Fracture Modes on the ΔK and Kmax Parameters of Fatigue Crack Propagation, Acta Materialia, 51(22) (2003) 3399-3414.

RkJQdWJsaXNoZXIy MjM0NDE=