Issue 29

A. De Rosis et alii, Frattura ed Integrità Strutturale, 29 (2014) 343-350; DOI: 10.3221/IGF-ESIS.29.30 349 authors conclude that the proposed approach appears to be feasible and highly promising for simulating a wide range of fluid-structure interaction phenomena. Figure 8 : Snapshots of the velocity field at Re =10 (first row), 25 (second row), 50 (third row) for different time instants, t =150 (first column), 300 (second column), 400 (third column). R EFERENCES [1] Benzi, R., Succi, S., Vergassola, M., The lattice Boltzmann equation: theory and applications, Physics Reports, 222 (1992) 145-197. [2] Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon, Oxford (2001). [3] Chen, H., Chen, S., Matthaeus, W., Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method, Physical Review Letters, 45 (1992) R5339-R5342. [4] Peskin, C. S., The immersed boundary method, Acta Numerica, 11 (2002) 479-517. [5] Fadlun, E., Verzicco, R., Orlandi, P., Mohd-Yusof, J., Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations, Journal of Computational Physics, 161 (2000) 35-60. [6] Mei, R.., Luo, L., Shyy, W., An Accurate Curved Boundary Treatment in the lattice Boltzmann Method, Journal of Computational Physics, 155 (1999) 307-330. [7] Mei, R., Yu, D., Shyy, W., Luo, L., Force evaluation in the lattice Boltzmann method involving curved geometry, Physical Review Letters E, 65 (2002) 041203. [8] De Rosis, A., Ubertini, S., Ubertini, F., A comparison between the interpolated bounce-back scheme and the immersed boundary method to treat solid boundary conditions for laminar flows in the lattice Boltzmann framework, Journal of Scientific Computing, (2014). [9] Janßen, C., Krafczyk, M., Free surface flow simulations on GPGPUs using the LBM, Computers & Mathematics with Applications, 61 (2011) 3549-3563. [10] Thürey, N., Körner, C., Rüde, U., Interactive free surface fluids with the lattice Boltzmann method, Technical Report, University of Erlangen-Nuremberg, Germany (2005). [11] Mancuso, M., Ubertini, F., An efficient Time Discontinuous Galerkin procedure for non-linear structural dynamics, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 6391-6406. [12] de Miranda, S., Mancuso, M., Ubertini, F., Time discontinuous Galerkin methods with energy decaying correction for non-linear elastodynamics, International Journal for Numerical Methods in Engineering, 83 (2010) 323-346. [13] Mancuso, M., Ubertini, F., An efficient integration procedure for linear dynamics based on a Time Discontinuous Galerkin formulation, Computational Mechanics, 32 (2003) 154-168. [14] De Rosis, A., Falcucci, G., Ubertini, S., Ubertini, F., A coupled lattice Boltzmann-finite element approach for two- dimensional fluid–structure interaction, Computers & Fluids, 86 (2013) 558-568.

RkJQdWJsaXNoZXIy MjM0NDE=