Issue 29

N.A. Nodargi et alii, Frattura ed Integrità Strutturale, 29 (2014) 111-127; DOI: 10.3221/IGF-ESIS.29.11 122 [11] Borja, R.I., Plasticity – Modeling & Computation, Springer, Berlin, (2013). [12] Bićanić, N., Pearce, C.J., Computational aspects of a softening plasticity model for plain concrete, Mechanics of Cohesive and Frictional Materials, 1 (1996) 75–94. [13] de Souza Neto, E.A., Perić, D., Owen, D.R.J., A model for elastoplastic damage at finite strains: algorithmic issues and applications, Eng. Comput., 11 (1994) 257–281. [14] Pérez-Foguet, A., Rodríguez-Ferran, A., Huerta, A., Consistent tangent matrices for substepping schemes. Comput. Meth. Appl. Mech. Eng., 190 (2001) 4627–4647. [15] Armero, F., Pérez-Foguet, A., On the formulation of closest-point projection algorithms in elastoplasticity. Part I: The variational structure, Int. J. Numer. Methods Eng., 53 (2002) 297–329. [16] Abbo, A.J., Sloan, S.W., An automatic load stepping algorithm with error control, Int. J. Numer. Methods Eng., 39 (1996) 1737–1759. [17] Armero, F., Pérez-Foguet, A., On the formulation of closest-point projection algorithms in elastoplasticity. Part II: Globally convergent schemes, Int. J. Numer. Methods Eng., 53 (2002) 331–374. [18] Dutko, M, Perić, D, Owen, DRJ, Universal anisotropic yield criterion based on superquadratic functional representation: Part I. Algorithmic issues and accuracy analysis, Comput. Meth. Appl. Mech. Eng., 109 (1993) 73–93. [19] Owen, D.R.J., Hinton, E., Finite Elements in Plasticity, Pineridge Press, Swansea, (1980). [20] Sloan S.W., Substepping schemes for the numerical integration of elastoplastic stress-strain relations, Int. J. Numer. Methods Eng., 24 (1987) 893–911. [21] Rosati, L., Valoroso, N., A return map algorithm for general isotropic elasto/visco-plastic materials in principal space, Int. J. Numer. Methods Eng., 60 (2004) 461–498. [22] Halphen, B., Nguyen, Q.S., Sur les matériaux standards généralizés, Journal de Mécanique, 14 (1975) 39–63. [23] Eve, R.A., Reddy, B.D., Rockafellar RT, An internal variable theory of plasticity based on the maximum plastic work inequality, Q. Appl. Math., 48 (1990) 59–83. [24] Miehe, C., Schotte, J., Lambrecht M., Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to texture analysis of polycrystals, J. Mech. Phys. Solids, 50 (2002) 2123–2167. [25] Mosler, J., Variationally consistent modeling of finite strain plasticity theory with non-linear kinematic hardening, Comput. Meth. Appl. Mech. Eng., 199 (2010) 2753–2764. [26] Petryk, H, Incremental energy minimization in dissipative solids, C. R. Mec., 331 (2003) 469–474. [27] Comi, C., Perego, U., A unified approach for variationally consistent finite elements in elastoplasticity, Comput. Meth. Appl. Mech. Eng., 121 (1995) 323–344. [28] Reddy, B.D., Martin J.B., Algorithms for the solution of internal variable problems in plasticity, Comput. Meth. Appl. Mech. Eng., 93 (1991) 253–273. [29] Nayak, G.C., Zienkiewicz, O.C., Convenient forms of stress invariants for plasticity, Proceedings of the ASCE Journal of the Structural Division, 98(ST4) (1972) 949–953. [30] Matzenmiller, A., Taylor, R.L., A return mapping for isotropic elastoplasticity, Int. J. Numer. Methods Eng., 37 (1994) 813–826. [31] Panteghini, A., Lagioia, R., A fully convex reformulation of the original Matsuoka-Nakai failure criterion and its implicit numerically efficient integration algorithm, Int. J. Numer. Anal. Methods Geomech., 38 (2014) 593–614. [32] Moreau, J.J., On unilateral constraints, friction and plasticity, Springer, Berlin (1974). [33] Biot, M.A., Mechanics of Incremental Deformations, Wiley, New York (1965). [34] Piccolroaz, A., Bigoni, D., Yield criteria for quasibrittle and frictional materials: A generalization to surfaces with corners, Int. J. Solids Struct., 46 (2009) 3587–3596. [35] Wriggers, P., Nonlinear Finite Element Methods, Springer, Berlin, (2008). [36] Artioli, E., Auricchio, F., Beirão da Veiga, L., A novel ‘optimal’ exponential-based integration algorithm for von- Mises plasticity with linear hardening: Theoretical analysis on yield consistency, accuracy, convergence and numerical investigations, Int. J. Numer. Methods Eng., 67 (2006) 449–498. [37] Klinkel, S., Govindjee, S., Using finite strain 3D-material models in beam and shell elements, Eng. Comput., 19 (2002) 254–271. [38] Felippa, C.A., A study of optimal membrane triangles with drilling freedoms, Comput. Meth. Appl. Mech. Eng., 192 (2003) 2125–2168. [39] Areias, P., Garção, J., Pires, E.B., Infante Barbosa J, Exact corotational shell for finite strains and fracture, Comput. Mech., 48 (2011) 384–406.

RkJQdWJsaXNoZXIy MjM0NDE=