RESISTENZA ALL'USURA DI UN CERAMICO A STRUTTURA MULTILAMINARE

Goffredo de Portu

ISTEC- CNR

Istituto di Scienza e Tecnologia dei Materiali Ceramici Consiglio Nazionale delle Ricerche Faenza

ACKNOWLEDGEMENT

- Stefano Guicciardi
- Edoardo Roncari
- Cesare Melandri
- Paola Pinasco
- Francesco Toschi
- Lorenzo Micele
- Giuseppe Pezzotti

Summary

- Why laminated composites
- Preparation of laminated composites
- Evaluation of residual stresses
- Wear behaviour

Why laminated composites

• The performances of wear-resistant materials are mainly related to the properties of thin surface layers

 Removal of material in engineering ceramics under sliding conditions is generally caused by the propagation of surface cracks resulting from tensile stresses in the wake of rubbing contact

- An increase in apparent surface toughness should lead to an improvement in wear resistance
- Laminated structures can be designed to induce compressive residual stresses at the surface by combining the different thermophysical characteristics (i.e. thermal expansion and shrinkage on sintering) of the different materials used

Artistic view of a Functional Graded Material

Cross Section Micrograph of a Shell

Tape - Casting Apparatus

Ceramic sheets produced by tape-casting

Technique for preparing laminated composites

Diagram of samples preparation

Warm Pressing

Section of Al₂O₃/Al₂O₃-ZrO₂ laminated composites

Microstructure of polished and thermally etched surface of the three materials: a) MA; b) AA; c) AZ; d) interface A/AZ

Tunneling Crack in Laminated Composite

Vickers Impression on Layer in Tension

Vickers Impression on Layer in Compression

Indentation model: relationship among K_{IC}, indentation load and crack length

 $K_{Ic} = \chi \cdot \frac{P}{\frac{3/2}{C_0}}$

 K_{Ic} = toughness of the stress free material χ = dimensionless constant (experimentally determined) P = indentation load c_0 = crack length

Relationship among K_{IC} , indentation load and crack length in presence of residual stress

$$K_{Ic} = \chi \cdot \frac{P}{c_1^{3/2}} + Y \cdot \sigma_{res} \sqrt{c_1}$$

where:

 c_1 = crack length in the stressed material Y = 1.29 geometrical factor σ_{res} = residual stress

Evaluation of residual stress in laminated composite

Stress Map in A/AZ Laminated Composite

Stress Profile in A/AZ Laminated Composite

Stress Map in A/2AZ Laminated Composite

Stress Profile in A/2AZ Laminated Composite

Measured hardness, calculated Young's modulus and surface toughness for the different materials

MATERIAL	HV (GPa)	E (GPa)	K _{Ic} (MPa ^{·√} m)*
A/AZ	17.6 ± 0.8	375	$5.37 \pm 0.50^{+}$
AA	16.4 ± 0.6	375	3.04 ± 0.23 ⁺
MA	16.6 ± 0.5	410	$3.35 \pm 0.43^+$ (3.61 ± 0.13 [§])

Distribution of stresses in sliding contacts

Schematic of the effects of compressive residual stresses in the surface

Ashby map with the points relative to the test conditions

Method

• inverted pin-on-disk tests on a Wazau tribometer

Pin-on-Disk Configuration

Experimental Procedures

- Load: 50 N, 100 N, 150 N
- Sliding speed: 0.05 m/s, 0.10 m/s, 0.15 m/s
- Sliding distance: 15 km
- Temperature: 22 °C
- Humidity: 70%

Mean values of the friction coefficients measured on the various materials for the different experimental conditions

Semi-Log plot of the disc specific wear of the various materials as function of the different experimental conditions

Surface cracking of stress free alumina (MA) and alumina containing compressive residual stresses (A/AZ) 100 N, 0.05 m/s

Fracture of the surface with detachment of flakes (100 N and 0.05 m/s)

MA

Plastically deformed debris spread over the surface (150 N and 0.15 m/s)

Fracture surfaces observed in the wear tracks

- Composite A/AZ and Monolithic MA
- 150 N; 0.15 m/s (5000 X)

CONCLUSIONS 1

- Suitable design and processing can lead to the production of laminated ceramic composites with compressive residual stresses at the surface.
- The stresses can be measured also using the indentation model or raman spectroscopy.
- These stresses are responsible for an increase of hardness and apparent surface toughness.
- If the wear mechanism is microcracking, the wear resistance of ceramics can be improved and the transition from mild to severe wear retarded.

CONCLUSIONS 2

• Friction coefficient of laminated composites is lower if compared with that exibited by the stress free materials.

• Laminated ceramic composites are attractive structures suitable for structural and tribological applications.